
3D cube-world construction robot

Final Report

C.H. Conroy
18072918

Submitted as partial fulfilment of the requirements of Project EPR402

in the Department of Electrical, Electronic and Computer Engineering

University of Pretoria

November 2021

Study leader: Mr. H. Grobler

21/11/2021

21/11/2021

C.H. Conroy

TABLE OF CONTENTS

Part 1. Preamble i

Part 2. Project definition: approved Project Proposal viii

Part 3. Main Report ix

1 Literature study 1

1.1 Background . 1

1.1.1 Overview . 1

1.1.2 Robotic System . 1

1.1.3 Object Detection . 1

1.1.4 Object Localisation . 4

1.2 Applicability to Project . 6

2 Approach 8

2.1 Problem Space . 8

2.2 Robotic Subsystem . 8

2.3 PC-Based Software Component . 9

3 Design and implementation 10

3.1 Design summary . 10

3.2 Mechanical Robotic Component . 12

3.2.1 End-Effector Mechanism . 12

3.2.2 Vacuum Actuation Mechanism . 16

3.2.3 End-Effector Assembly . 16

3.2.4 Z-Axis Assembly . 17

3.2.5 Z-Axis Mount . 18

3.2.6 X-Axis Assembly . 20

iii

C.H. Conroy

3.2.7 Y-Axis Assembly . 21

3.2.8 Final Assembly . 23

3.3 Embedded Robot Controller . 24

3.3.1 Circuit Design . 24

3.3.2 PCB Design . 26

3.3.3 Motor Control . 28

3.3.4 Serial Communication . 30

3.4 Shape Definition Interface . 31

3.4.1 Background . 31

3.4.2 3D Shape Render . 32

3.5 Computer Vision System . 35

3.5.1 Cube Feature Investigation . 36

3.5.2 3D Localisation . 37

3.5.3 Top-Level Design . 39

3.5.4 Fiducial Identification . 41

3.5.5 Square Corner Detection . 43

3.5.6 Cube Pose Estimation . 44

3.6 System Controller . 45

3.6.1 Integrated Software . 45

3.6.2 Construction Planner . 46

3.6.3 Robotic Motion Planner . 47

4 Results 48

4.1 Summary of results achieved . 48

4.2 Qualification Tests . 50

5 Discussion 65

5.1 Interpretation of results . 65

5.1.1 Shape Construction . 65

5.1.2 Shape Definition . 66

5.1.3 Robotic System . 66

iv

C.H. Conroy

5.1.4 Computer Vision System . 68

5.2 Critical evaluation of the design . 69

5.2.1 Aspects to be improved in the present design 69

5.2.2 Strong points of the current design . 70

5.2.3 Under which circumstances is the system expected to fail? 70

5.3 Design ergonomics . 71

5.4 Health, safety and environmental impact . 71

5.5 Social and legal impact of the design . 72

6 Conclusion 73

6.1 Summary of the work completed . 73

6.2 Summary of the observations and findings . 73

6.3 Contribution . 74

6.4 Future work . 75

7 References 76

Part 4. Appendix: technical documentation 79

HARDWARE part of the project 80

Record 1. System block diagram . 80

Record 2. Systems level description of the design 81

Record 3. Complete circuit diagrams and description 82

Record 4. Hardware acceptance test procedure . 86

Record 5. User guide . 87

SOFTWARE part of the project 88

Record 6. Software process flow diagrams . 88

Record 7. Explanation of software modules . 89

Record 8. Complete source code . 90

Record 9. Software acceptance test procedure . 91

Record 10. Software user guide . 92

v

EXPERIMENTAL DATA 97

Record 11. Experimental data . 97

C.H. Conroy

LIST OF ABBREVIATIONS

ADC Analog-to-digital converter
API Application programming interface
BRIEF Binary robust independent elementary features
CAD Computer-aided design
CNN Convolutional neural network
DLT Direct Linear Transform
DoF Degrees of Freedom
EPnP Efficient PnP
FAST Features from accelerated segment test
GUI Graphical user interface
IC Integrated circuit
LSB Least significant bit
MSB Most significant bit
NDC Normalized device coordinates
OpenGL Open Graphics Library
ORB Oriented FAST and rotated BRIEF
PCB Printed circuit board
PnP Perspective-n-Point
PSU Power supply unit
PWM Pulse width modulation
RF Radio frequency
RGB Red, green and blue
RGBD Red, green, blue and depth
ROI Region of interest
RX Receiver
SCARA Selective compliance articulated robot arm
SIFT Scale-invariant feature transform
SURF Speeded-up robust features
SWD Serial Wire Debug
ToF Time-of-flight
TQFP Thin quad flat pack
TX Transmitter
UART Universal asynchronous receiver-transmitter
USB Universal serial bus

vii

C.H. Conroy Part 2. Project definition: approved Project Proposal

Part 2. Project definition: approved Project Proposal

This section contains the problem identification in the form of the complete approved Project
Proposal, unaltered from the final approved version that appears on the AMS.

viii

Neatly done Project Proposal.

C.H. Conroy Part 3. Main Report

Part 3. Main Report

xv

C.H. Conroy Part 3. Main Report

1. Literature study

1.1 Background

1.1.1 Overview

The use of artificial systems to emulate tasks that humans find straightforward to perform, such
as solving 2D puzzles, has been a long-standing practice since components of the solution
system are often relevant in industrial applications [1]. This work focuses on a similar task
that involves the construction of 3D shapes using small cubes. Such a task bears similarity to
those tasks in the domain of pick and place robotics with the variation that object placement
is dependent on the location of previously placed objects. Existing solutions in this domain
typically consist of two primary components: a computer vision system to detect and localise
the object of interest as well as a robot to alter the location and orientation of the object in 3D
space [2].

1.1.2 Robotic System

A robot can be viewed as the combination of two core components, namely the robotic
manipulator and the end-effector. The end-effector is the physical interface between the robot
and the object of interest and is referred to as a robot gripper when its purpose is to grip
the object to facilitate pose manipulation. The nature of the robot gripper depends on the
physical characteristics of the object of interest and as such a wide variety of grippers have
been developed. These include stiff finger grippers, flexible finger grippers, magnetic grippers
and vacuum grippers which are best suited for objects with a flat surface [3]. The function
of the robotic manipulator is to alter the position and orientation of the end-effector in 3D
space. Robotic manipulators are categorised by the coordinate systems used to describe their
movement mechanics which includes polar, cylindrical, articulate and Cartesian coordinates
[4]. Cartesian robots have the benefit that accuracy of the robot is uniform throughout the
robot’s work envelope.

1.1.3 Object Detection

The purpose of the computer vision system is to detect the object of interest and localise
it using the input image data captured from the robot’s workspace, such that the robot has
sufficient information to interact with the object. It is important that a distinction is made
between object detection and object recognition. Object detection refers to the process of
locating instances of a given object within an image while object recognition refers to the
identification and classification of an object. This work is concerned with the former as the
object of interest is known to be a cube. There are a wide range of approaches to the object

1

C.H. Conroy Part 3. Main Report

detection problem. These can be broadly classified as being part of either the traditional
computer vision domain or the deep learning domain [5]. In both cases, various techniques are
used to extract information from the image data in the form of features which are subsequently
used to detect the objects of interest [6].

The distinguishing factor between traditional and deep-learning domains lies in the method
of feature extraction. Traditional approaches incorporate a manual feature extraction step
before the data is processed further. Deep learning approaches, on the other hand, integrate
this step as part of the underlying model, such as a convolutional neural network (CNN). In
this sense, such models can be viewed as highly integrated structures which take images as
input after minimal preprocessing and produce the object recognition information as output.
A deep-learning approach has been developed to detect generic rectangular cuboid objects in
everyday scenes captured from a single perspective [7]. However, the generic nature of this
task requires a highly sophisticated approach to achieve reasonable success.

The best solutions to computer vision problems that arise from unconstrained environments
and require a great degree of generality are almost always found in the deep learning do-
main. However, when the problem is sufficiently constrained, solutions based on traditional
techniques often exhibit performance that is comparable or even superior to that of deep
learning approaches. In such cases, traditional approaches are often preferable since, unlike
deep learning approaches, they do not require a massive training data set or a large degree
of computational power. In general, a feature can be considered to be a piece of information
present within the image input data. Edges, corners, blobs and ridges are examples of common
low-level features that are considered within the traditional computer vision domain. Feature
detectors are used to locate these fragments of information in the image input data. The Canny
edge detector [8] and Harris corner detector [9] are examples of such methods which are
popular for detecting edge and corner features respectively within an image.

The blurring of an image is a preprocessing step commonly employed with traditional ap-
proaches. This operation acts as a low-pass filter and filters out high-frequency noise which
manifests itself as outlier pixel intensities. Improved performance of the feature detection
stage is generally observed as a result. The conversion of an image to grey-scale is another
common preprocessing step which reduces the complexity of subsequent operations when the
color information of the image is insignificant. Thresholding is a useful method for obtaining
shape-level feature information through image segmentation and is often applied following
the preprocessing phase. The application of this technique to a grey-scale image results in
a binary image which lends itself to further shape-level feature extraction. Since there are
exposure inconsistencies that arise between images due to environmental light variability,
it is usually prudent to incorporate an automatic threshold level determination mechanism
when thresholding. In the ideal case, a grey image will exhibit a bimodal distribution of
pixel intensities where the minima between the peaks corresponds to the ideal threshold
value. However, such pixel intensity distributions are not necessarily guaranteed in most
practical applications and, as a result, more robust automatic thresholding techniques have
been developed, such as Otsu’s method [10]. Existing automatic thresholding methods are
usually classified as either histogram shape-based, clustering-based, entropy-based, object
attribute-based, spatial or local methods [11].

Contours are another useful shape-level feature that can be used in service of traditional

2

C.H. Conroy Part 3. Main Report

approaches to object detection. The bounding outline that captures the shape of an object
in an image is considered to be a contour. There are many different approaches to contour
detection which, in general, can be categorised as either pixel-based, edge-based or region-
based methodologies. Contours in images frequently correspond with discontinuities in
grey-scale pixel intensity, particularly in the case of contours arising from luminance changes,
which are detectable through the corresponding gradient magnitude information. A common
approach to extract this information is to make use of a local filter which is convolved with the
image. This results in a gradient space where the greatest gradient magnitudes are indicative
of potential contours. However, this method is unreliable as it usually produces discontinuous
contours and, therefore, often requires supplementary high-level feature information [12].

The contour detection problem is significantly simplified when the problem space is con-
strained to only binary images. In this case, gradient information is not required as with
grey-scale images, as pixel intensity discontinuities can be determined using only adjacent
pixels. Furthermore, a binary image can be interpreted as consisting of a number of connected
components where a connected component is defined as a set of pixels with identical intensity
values which are interconnected through either 4-pixel or 8-pixel connectivity. Within this
framework, the concept of a contour can be reduced to the sequence of pixels that define the
boundary between adjacent but dissimilar connected components. The advantage of such
contours is that they are guaranteed to be continuous, in contrast to the grey-scale image case.
The border following algorithm is a longstanding approach to the detection of these binary
image contours [13]. An extension to this approach exists whereby a more advanced border
labelling method is employed to facilitate the extraction of topological structure information.
Such information includes the hierarchical relationship between borders as well the distinction
between outer and hole borders. This approach has also been adapted such that only the
top-level outer borders in the hierarchy are detected which offers improved computational
performance for applications that only require such information [14].

Contour detection, in conjunction with contour template matching, has been successfully used
in robotic object detection and grasping applications using a single monocular camera [15].
There exist a number of other feature detectors which have applicability to cube detection.
For objects with straight edges, the Hough transform is a useful image processing tool that
can be used to capture these edges with parameterised straight lines in 2D space which is
useful to determine the orientation of the object [16]. A more advanced and robust approach
to determining useful features within an image involves the use of a feature descriptor which
is a vector of values that describes the local region about a given image point. A number
of feature descriptor algorithms have been developed such as the scale-invariant feature
transform (SIFT) [17], speeded-up robust features (SURF) [18], features from accelerated
segment test (FAST) [19], binary robust independent elementary features (BRIEF) [20] and
finally the oriented FAST and rotated BRIEF (ORB) [21] algorithms. These features can be
used to detect instances of objects within the input image data through the process of template
matching. This method has been successfully applied as part of the detection process for
cubes marked with alphabetical and numerical characters [22].

3

C.H. Conroy Part 3. Main Report

1.1.4 Object Localisation

The detection of an object within an image only forms the first stage in the robot’s computer
vision system. In order for the robot to interact with the object of interest in the physical
world, the detected object needs to be localised such that its pose with respect to the robot’s
coordinate system is known. The object localisation methods available for robots when only
red, green and blue (RGB) image input data is available can be categorised as either monocular
vision or stereo vision approaches. With the monocular vision case, only a single RGB image
is available as input at each time instance while in the stereo vision case, two or more RGB
images are available [23]. The primary drawback of monocular vision approaches is the loss
of depth information that arises during the projection of the 3D world onto a single 2D image.
An additional piece of information, such as the size or world plane of the object, is required in
order to recover the depth information. Stereo vision approaches, on the other hand, are able
to recover the depth data based on the disparity between images that arises due to difference
in pose of the cameras used to capture the images [24]. However, stereo vision approaches
require more hardware and greater computational resources than monocular vision approaches.
An alternative approach is to make use of a device that captures red, green, blue and depth
(RGBD) data directly, such as a time-of-flight (ToF) camera or integrated binocular stereo
camera.

In order to relate the object detection information derived the from camera input data to the
world frame, the pose of the camera with respect to the world coordinate system needs to be
determined. This information is represented by an extrinsic camera matrix which encompasses
the rotation and translation parameters of the camera’s pose with respect to the world frame.
The extrinsic matrix can be used to map points in the world coordinate system to the 3D
camera coordinate system. In order to map points from the 3D camera coordinate system
to the 2D homogeneous coordinates in the image, an intrinsic camera matrix is used [25].
Intrinsic parameters describe internal properties of the camera and are based on the pinhole
camera model. These include the camera’s inherent principal point offset, focal length and
axis skew. The skew of the sensor axes occurs as a result of the optical axis not being exactly
perpendicular to the sensor plane. However, for practical purposes this parameter is often
discarded. The extrinsic matrix and intrinsic matrix can be multiplied to form the projection
matrix which is used to project any point in the world frame to the image frame provided that
the pinhole camera model is used and no lens distortion effects are present [26].

The intrinsic and extrinsic camera parameters need to be determined in order to make use of
the pinhole camera model in practical applications. Camera calibration is used to estimate
the intrinsic characteristics of the camera while camera localisation is used to estimate the
extrinsic parameters of the camera. A popular approach to camera calibration involves the
use of a planar pattern with known dimensions of which multiple images are captured at
various different poses [27]. Either the pose of the planar pattern or the camera may be
altered between calibration images. The application of this algorithm to a given set of such
images will produce an estimate of the intrinsic parameters of the camera as well as the radial
distortion of the camera. Real-world cameras have lens-induced distortion effects that are not
included as part of the pinhole camera model. Radial distortion is observed when the degree
to which light rays bend when incident on the lens is not consistent with the distance from the

4

C.H. Conroy Part 3. Main Report

optical centre of the lens. Tangential distortion is observed when a degree of misalignment
exists between the image plane and lens. These distortion effects are described by the radial
and tangential distortion coefficients respectively [28].

In order to determine the extrinsic camera matrix, the rotation and translation of the camera
with respect to the world coordinate system needs to be calculated. A popular approach to
this problem involves the use of n 3D to 2D point correspondences to calculate the camera
pose for six degrees of freedom (DoF). A point correspondence refers to the situation where
the 3D location of a given point in the world coordinate system, as well as the corresponding
2D location in the homogeneous image frame, are known. The most general formulation
of this problem requires the computation of the camera’s intrinsic parameters as well as the
camera’s extrinsic parameters. The Direct Linear Transform (DLT) algorithm is a well-known
solution to this problem when at least six point correspondences are given [29]. However,
this approach suffers from a degree of inaccuracy due to the need to estimate the intrinsic
parameters of the camera.

If the assumption is made that the camera is calibrated, such that the intrinsic parameters
of the camera are known, the problem reduces to the Perspective-n-Point (PnP) problem
which has been deeply explored in literature. As such, a number of iterative and non-iterative
solutions to the PnP problem have been developed. The efficient PnP (EPnP) algorithm is
a popular non-iterative approach for the case when four or more point correspondences are
given. Although four point correspondences is sufficient for EPnP to find a solution, a greater
number is preferred to provide a degree of redundancy and reduce the solution’s sensitivity to
noise. It is also noted that the algorithm is capable of solving for the case where the points
used for the point correspondences have a planar arrangement in the world coordinate system
[30].

Within the context of the PnP problem, the first step to solve for the camera’s extrinsic
parameters requires the creation of a set of point correspondences. The use of fiducial markers
is a popular approach to this task, notably in the augmented reality domain. In general, a
marker is an object that is placed as a known point of reference in the scene that is processed
by the computer vision system. A fiducial marker system consists of three core components,
namely the markers, a fiducial detector and an encoding scheme. The fiducial detector typically
makes use of traditional computer vision techniques and are therefore usually characterised
by simple designs that are distinct within the scene [31]. Morphological operations often form
part of the traditional methods applied during the marker detection stage [32].

The design of the marker ensures it is rotationally asymmetric while encoding a piece of
information such as the fiducial identifier. Some existing fiducial families, such as ARToolKit-
Plus [33] and AprilTag [34], make use of black and white square grids to encode binary data
where each cell represents a binary digit. In order to extract information from the markers,
perspective distortion needs to be eliminated. In the case of square markers, the corners of
each marker candidate are used to compute a homography that is used to remove this distortion
[35]. Finally, a unique marker with a known location in the world coordinate system can be
used to create a point correspondence through the combination of this information with its
detected location in the image coordinate frame. The use of multiple markers facilitates the
creation of the requisite point correspondence set.

5

C.H. Conroy Part 3. Main Report

1.2 Applicability to Project
There exists a substantial amount of literature exploring the field of artificial systems and their
application in various problem domains. Problems addressed by artificial system solutions in
the domain of pick and place robotics are generally the most closely related to the 3D shape
construction task explored in this project. It was noted that, at a system level, solutions in this
domain typically consist of a computer vision system used in conjunction with a robot. This
information, in addition to the implementation details of these systems, was used as a starting
point to guide the system-level design in this project.

In terms of the robotic system, the general approach to the mechanical design of a robot can
be partitioned into the design of two distinct components, namely the robotic manipulator
and the end-effector. The literature highlights a wide variety of approaches to the design of
both these mechanical facets. In both cases, the selection of a particular approach depends
substantially on the the nature of the problem space. Fortunately, there is an expansive body
of knowledge in terms of the strengths and weaknesses for each of the approaches for both
the end-effector and the robotic manipulator with respect to a number of problem domains.
As such, the literature was used as the basis for the mechanical design approach selected
decisions made in this project. In addition, the machine design procedure frequently appears
as a core component of the mechanical design process in similar projects. Therefore, this
procedure was also incorporated into the robot design process utilised in this project.

The detection and localisation of the constituent construction cubes by the computer vision
system is an essential component of this project that is required to facilitate interaction of the
robot with dropped cubes. Fortunately, there exists a vast range of literature in the computer
vision field that has direct applicability to this problem. For the cube detection component of
this problem, there are two broad potential solution domains, namely the deep-learning and
traditional computer vision domains. Solutions in the deep-learning domains are typically best
applied to problems that require a significant degree of generality while traditional solutions
are best suited to constrained problems. Traditional detection solutions are based on the
manual extraction of selected features from the object of interest which are subsequently used
to identify instances of the object in arbitrary images. A number of methods that are useful
for extracting such features were identified in this literature study and many of these were
trialed in application to the cube detection problem in this project. The methods that exhibited
the greatest degree of accuracy and robustness when applied were included as part of the final
computer vision system implementation.

Once a cube has been detected within the input image data, the location and orientation of the
cube needs to be determined with respect to the robot in the physical world. This relates to the
problem of object localisation which has been explored extensively in literature, particularly
in the augmented reality and robotic system domains. The exact nature of the solution depends
on whether a monocular or stereo vision approach is used. In general, existing solutions build
on the mathematical foundation provided by the pinhole camera model. This model formed
the basis of describing the relationship between the robot and camera coordinate system’s
in this project. The intrinsic and extrinsic camera parameters outlined within this model are
sufficient to facilitate the projection of points between the coordinate systems. This was

6

C.H. Conroy Part 3. Main Report

taken advantage of to determine the location of cube points with respect to the robot from the
corresponding points in the input image data.

In order to make practical use of the above object localisation approach, the intrinsic and
extrinsic camera parameters need to be determined. The camera calibration techniques
identified in literature offer an avenue to determine the intrinsic matrix of the camera and these
were subsequently applied to calibrate the camera used in this project. Similarly, solutions
to the PnP problem provide a means to determine the extrinsic camera parameters and, as
such, one of the identified solutions from the literature was utilised to determine the camera
extrinsics in this project. Furthermore, any solution to the PnP problem requires a set of point
correspondences between the world frame and the image frame. Existing approaches make
use of fiducial markers to obtain these correspondences and the same approach was applied
in this project. Furthermore, a number of the papers included as part of this literature study
detail a wide variety of fiducial marker design considerations. These were used to inform the
design of the fiducial markers used in this project.

Overall, there have been a number of research projects into artificial systems, consisting of a
computer vision system used in conjunction with a robot to perform tasks such as 2D puzzle
building or generic pick and place operations. However, the specific task of constructing
moderately complex 3D shapes using small cubes does not appear to have been explored. A
similar project involved the use of larger cubes marked with identification artifacts to assist
in the detection of the cubes [22]. In contrast, the cubes used in this project exhibit a plain
appearance and a greater degree of reflectivity due to their metallic nature. In general, the
majority of the approaches only focus on the development of a particular sub-component of the
robotic and computer vision system while the bulk of the system comprises of an off-the-shelf
implementation adapted to support the task in question. This work aims to develop a robot in
conjunction with a computer vision system with all components tailored to fulfil the 3D shape
construction task.

7

C.H. Conroy Part 3. Main Report

2. Approach

2.1 Problem Space
The nature of the selected approach to the cube construction task explored in this project
is completely dependent on the characteristics of the problem space. The problem space
was broadly defined as part of the project proposal. However, further details regarding the
cube component of the problem space are required in order to justify the chosen approach.
A number of general materials were considered to form the construction cubes including
hard plastic, wood, aluminium and steel. Hard plastic cubes have the advantage that they are
widely available off-the-shelf while wood offers ease in cube manufacturing. However, the
low density of these materials means the cubes are more likely to shift in the shape structure
when exposed to vibrations. Therefore, aluminium cubes were chosen due to their greater
density. Aluminium was selected over steel due to its superior machinability and inability to
rust.

2.2 Robotic Subsystem
The robotic subsystem (FU3) was identified as one of the major components of the solution
system from a functional perspective in the project proposal. The high-level purpose of
FU3 is to facilitate the manipulation of the construction cube’s pose in 3D space. The
robotic end-effector (FU3.5) acts as the robot’s physical interface with the cube. Grippers are
commonly used for the end-effector components. However, there exist planar arrangements
of adjacent cubes that prevent access to at least one opposite face pair of the target cube which
is required by the gripper to exert a grip. Therefore, a vacuum-based suction cup end-effector
mechanism was selected as it only requires access to the top face of the target cube to exert a
grip. Furthermore, the non-porous and smooth nature of the aluminum cubes render the cube
amenable to this mechanism.

There are a wide range of approaches to the robotic manipulator component (FU3.4) which
is required to manipulate the end-effector pose in 3D space. These include the articulated
robot, selective compliance articulated robot arm (SCARA), delta robot and the Cartesian
robot. The articulated robot offers the greatest flexibility in the range of poses the robot can
attain while the delta robot offers excellent movement speed. However, these kinematics of
these robots are complex and minor imperfections in their implementation creates inaccuracy.
Furthermore the precision of these robots, in addition to SCARA robots, varies throughout the
workspace. Cartesian robots, on the other hand, exhibit consistently high precision throughout
the workspace and are suited to Cartesian-based problems. A Cartesian gantry robot was
selected as the robotic manipulator approach for these reasons. The robot was designed
outwards from its interface with the cube in an iterative fashion using computer-aided design
(CAD) software and a mathematical base in dynamics.

The robotic controller (FU3.2) was designed as an embedded platform to provide an interface
to control the robotic manipulator and end-effector. This component was first designed and

8

C.H. Conroy Part 3. Main Report

prototyped using a breadboard before a more robust PCB implementation was developed. The
embedded software for this controller was prototyped using the STM32 hardware abstraction
layer (HAL) library before being converted to first principles. The power supply (FU3.6) was
taken off-the-shelf as well as the motor drivers (FU3.3). Finally, the communication unit
(FU3.1) was based on the universal asynchronous receiver-transmitter (UART) and realised
as a custom communication protocol used in conjunction with an off-the-shelf CH340 serial
converter integrated circuit (IC).

2.3 PC-Based Software Component
The PC-based software component (FU2) was developed as a graphical user interface (GUI)
application using C++ and the QT framework. C++ was selected due to the suitability of
its performance to the computationally intensive nature of the image processing required in
this project. QT was selected due to its maturity and support for OpenGL integration. FU2
was explored and developed in a bottom up approach. This means that the shape definition
component (FU2.1) and cube detection and localisation component (FU2.2) were designed
and developed first followed by the system controller (FU2.3), construction planner (FU2.4)
and robotic motion planner (FU2.5) which all depend on FU2.1 and FU2.2. OpenGL was
selected as the low-level graphics API to implement the 3D shape model render required by
the shape definition component. This component was originally developed externally to the
QT ecosystem to verify its functionality before being integrated adapted for integration with
the QT OpenGL interface.

A number of object detection approaches were investigated for cube detection in FU2.2.
However, a binary thresholding approach based on the reflection intensity of light from the
top cube faces was found to be the most robust and used in conjunction with contour detection.
A pin-hole camera model based approach was used to map points between the image and
world frames for the purpose of cube localisation in FU2.2. These components were initially
developed using the OpenCV library before being progressively replaced with first principle
implementations.

Finally the system controller was developed simultaneously with the construction planner
and the robotic motion planner in a tightly integrated manner. As the system controller acts
as the central point where the information pathways from the shape definition unit, cube
detection and localisation unit and the robotic subsystem intersect, the system controller
was developed as the top-level component in the PC-based software that integrates the other
software components. As a result, the primary high-level software design work took place as
part of the development of this component.

The approach reasoning and considerations discussed here correspond directly to the structure
of the system design presented in Section 3. Specifically the design of the robotic subsystem
is first presented in two parts, namely the mechanical design in Section 3.2 followed by the
embedded controller design in Section 3.3. The design of the PC-based software is then
presented in three parts. The first two parts are the shape definition component in Section 3.4
and the computer vision component in Section 3.5 on which the system controller depends.
Finally the system controller and the use of this component as the basis for system integration
is presented in Section 3.6.

9

C.H. Conroy Part 3. Main Report

3. Design and implementation

3.1 Design summary
This section presents a summary of the project design tasks as well as the implementation of
these tasks (see Tables 1-2).

Deliverable or task Implementation

Completion of
deliverable or
task, and section
in the report

Mechanical design and
construction of robotic
manipulator

The mechanical design of the robot
manipulator was completed from first
principles using the Fusion 360 CAD
software. This was constructed by the
student both using 3D printing and
metal machining technologies.

Completed.
Section 3.2

Mechanical design and
construction of robotic
end-effector mechanism

The mechanical design of the robotic
end-effector mechanism was completed
from first principles using the Fusion
360 CAD software. This was
constructed by the student using 3D
printing technologies.

Completed.
Section 3.2.1

Design of embedded robot
controller circuit

The design was completed from first
principles and a prototype was
implemented on a breadboard.

Completed.
Section 3.3

Design of printed circuit
board (PCB) for embedded
robot controller

The PCB design was completed using
the KiCAD software package from first
principles.

Completed.
Section 3.3.2

Development of firmware
for embedded robot
controller

Firmware was developed from first
principles using C.

Completed.
Section 3.3.4
Section 3.3.3

Design of communication
protocol for
communication between
the embedded robot
controller and the PC-based
software

The communication protocol design
was completed from first principles and
implemented between the embedded
robot controller and PC.

Completed.
Section 3.3.4

Table 1. Design summary.

10

C.H. Conroy Part 3. Main Report

Deliverable or task Implementation

Completion of
deliverable or
task, and section
in the report

Design and implementation
of shape definition GUI
based on a low-level
graphics application
programming interface
(API)

The shape definition GUI was designed
and implemented from first principles
using the OpenGL graphics API.

Completed.
Section 3.4

Development of computer
vision cube detection
algorithm

The computer vision cube detection
algorithm was developed from first
principles using C++. A few basic
image processing functions were used
from OpenCV.

Completed.
Section 3.5.1
Section 3.5.3
Section 3.5.5
Section3.5.6

Development of computer
vision cube localisation
algorithm

The computer vision cube localisation
algorithm was developed from first
principles using C++. A few basic
image processing functions and camera
calibration functions were used from
OpenCV.

Completed.
Section 3.5.2
Section 3.5.3
Section 3.5.5
Section 3.5.4

Development of
construction planner
software component

The construction planner software
component was developed from first
principles.

Completed.
Section 3.6.2

Development of robotic
motion planner software
component

The robotic motion planner software
component was developed from first
principles

Completed.
Section 3.6.3

Development of system
control software that
integrates the shape
definition, computer vision,
construction planner and
robotic motion planner
software components

The system control software was
developed from first principles using
the QT C++ framework.

Completed.
Section 3.6.1

Table 2. Design summary continued.

11

C.H. Conroy Part 3. Main Report

3.2 Mechanical Robotic Component

3.2.1 End-Effector Mechanism

For the purposes of this project, the end-effector subsystem refers to the components respons-
ible for enabling the direct manipulation of the cube. These components include the vacuum
pad, tubing and vacuum generation system. The end-effector subsystem is attached to the
gantry robot by means of an end-effector mechanism. In order to design this component, the
machine design procedure was followed. The first step of this procedure involves understand-
ing the requirements of the machine. The end-effector mechanism requirements are listed
below.

• It should attach the end-effector to the gantry robot.
• It should maintain the suction-pad component in a vertical orientation.
• It should allow limited linear buffered motion of the vertical suction-pad component

along the z-axis w.r.t the gantry robot.
• The linear buffer should facilitate at least a 5mm range of linear motion.
• The purpose of the linear buffer is to allow the robot to target a z-axis position slightly

below the intended z-axis position to ensure the cube is definitely touching the placement
surface so the cube is not released in mid-air.

• It should allow the vertical suction-pad components to rotate about the z-axis.
• It should allow the connection of a drive mechanism to drive the rotation about the

z-axis.
• It should allow the vacuum tubing to be routed to the gantry robot.

The initial design investigated for the end-effector mechanism was centred around the require-
ment of a 5mm linear displacement buffer. A buffer can be implemented as a linear rod with
guide holes as well as a ridge on the rod that allows a spring to be placed between the ridge
and one of the guide holes. This provides a linear buffering action along the axis to which
the rod is aligned. The design idea with respect to the end-effector mechanism is to mount
the vacuum pad on the end of the rod opposite to the spring and position the rod in a vertical
orientation with the vacuum pad at the bottom where it can access cubes on the plane below it.
When the vacuum pad is not in contact with anything, the spring and the force of gravity push
the vacuum pad into its lowest position. When a force is applied vertically upwards against
the vacuum pad, as is the case when the vacuum pad is pressed against a cube, the spring will
compress if the force is greater than the gravitational force on the moving rod as well as the
spring force at that length.

An issue with this simple design is that the vacuum tube needs to be routed to the vacuum pad
as well as the fact that the vacuum pad needs to be rotatable by an external motor. The tubing
routing issue is solved by making the rod hollow and routing the tube through the rod and
out the top of the rod. Furthermore, it is noted that the system only needs to be able to rotate
a minimum of 90 degrees to be able to realise any orientation of a cube in terms of rotation
about the z-axis. The rubber tubing is comfortably able to absorb this degree of torsion and

12

C.H. Conroy Part 3. Main Report

therefore, no additional mechanisms are required to route the tube.

The second design consideration is how the rod will be rotated to rotate the vacuum pad given
that the rod has linear motion of 5mm. The design solution to this investigated in the proof
of concept design is the use of a gear attached to the rod which can be driven by a motor
gear. The use of gears with their axes aligned with the rod axis allows the linear motion to be
absorbed by the linear freedom of movement between the gear teeth. In order to absorb this
motion, the height of the gear attached to the rod needs to be at least 5mm greater than the
height of the motor gear is the maximum overlap is to be always maintained assuming the
position of the motor is fixed with respect to the component supporting the rod. An alternative
design that could be explored in the future, is fixing the linear position of the motor with
respect to the spring to reduce the gear height and using the weight of the motor to act in a
similar manner to the spring force.

The rod designed to facilitate the rotation and linear buffer motion of the vacuum pad was
further developed. Intuitively, the rod requires a relatively low amount of torque to initiate
and maintain rotary motion. Therefore, the smallest class of NEMA stepper motors, namely
NEMA 8 motors, were considered as a guide for the motor footprint in the mechanical design.
A preliminary decision to use a stepper motor over a servo was made based on the fact that
rotary stability is essential once the vacuum pad has reached its required orientation. Servos
may pulsate at standstill which is undesirable as the gripped cube may displace adjacent cubes.
Furthermore, the rotation speed required is low and stepper motors exhibit the best torque
characteristics at low speed. Lastly, in full step mode, NEMA 8 stepper motors typically
exhibit a full step resolution of 1.8○/step which falls within the rotary accuracy specifications
of 5○.

The width and breadth of the front face of the NEMA 8 stepper motor is 20 mm and 20 mm.
The diameter of the designed rotary rod is 13 mm. In order to facilitate a sufficient space
between the motor and the rotary rod for spring and rotary rod gear, the centres of rotation
of the rotary rod and the NEMA 8 stepper motor were placed 20 mm apart. Since the step
accuracy of the motor is sufficient, no gearing ratio is required. Therefore, the most space
efficient manner of connecting these two rotary centres is with two gears with a pitch diameter
of 20mm each. Since this is not a specialised application of these gears, relatively standard
parameters were selected for their design. The gear parameters as designed in Fusion 360 and
used for both gears are as follows:

• Pressure Angle = 20○
• Module = 1
• Number of Teeth = 20
• Backlash = 0.3 mm
• Root Fillet Radius = 0.3 mm
• Pitch Diameter = 20 mm

A relatively large backlash of 0.3 mm was selected due to the high tolerance required by 3D
printed parts. A pressure angle of 20○ and 25○ are the most commonly used angles in gear
design. A smaller pressure angle has weaker teeth but runs quieter. Due to the low torque
nature of this gear application, a 20○ pressure angle was selected to take advantage of the
qualitative low noise benefit.

13

C.H. Conroy Part 3. Main Report

The point of entry for calculating the various mass elements that need to be translated and
rotated is the aluminium cube that needs to be manipulated. The density of aluminum is
2.7g/cm3. Since the cube has a maximum side length of 1.3cm, the cube has a maximum
mass of 5.94g. Using the updated design of the end-effector rod, the 3D model was converted
to a triangle mesh and exported to the 3D printing slicer Cura. Using PLA 1.75mm filament,
Cura estimated the weight of the part to be 7g when printed at 50% infill. The total rotating
mass in the end-effector was 20.74 g.

The system does not have any explicit angular velocity and angular acceleration specifications
that it is required to meet from the project proposal. Therefore, it is decided that on a
qualitative basis that the end-effector should be capable of completing a single rotation once
every 4 seconds when at maximum velocity. Similarly, it is also decided that the end-effector
should be capable of reaching this speed in 0.5 seconds from standstill. The angular velocity
is computed as shown below in Equation 1.

ω = ∆θ

∆t
= π

2
rad/s (1)

The maximum angular acceleration the motor should be capable of driving is as calculated
in Equation 2 below assuming that the system accelerates linearly to the maximum velocity
from standstill.

α = ∆ω

∆t
= π

4
rad/s2 (2)

In order to calculate the torque required to rotate the end-effector component, the moment
of inertia IO about the centre of rotation O of the component needs to be computed. The
component is modeled as a cylinder with a radius of 10 mm and all of its mass located in its
outer shell only. This is the cylindrical configuration that has the greatest moment of inertia
and therefore requires the greatest torque to rotate. This guarantees that a motor capable
of rotating this is capable of rotating the actual component. The moment of inertia for the
cylindrical model is calculated as shown in Equation 3 below

IO =mr2 = 2.074×10−6 kg ⋅m2 (3)

where m is the mass of the cylinder and r is the radius of the outer shell of the cylinder. In
order to relate the kinematic motion of the rotary end-effector component to the external
forces applied to it, the moment equation for rotation about a fixed axis O shown in Equation
4 below can be used

∑MOi =∑Firi = IOα (4)

where MOi is the moment that results from the application of force Fi at the ith point at
perpendicular distance ri from the axis of rotation O. Two external forces to the rotary end-
effector component are considered, namely the force of static friction Ff s and the force FA

14

C.H. Conroy Part 3. Main Report

applied to the component gear by the gear on the motor’s drive shaft. Only static friction is
considered as it is generally greater than kinetic friction and therefore more challenging to
overcome. The coefficient of static friction for plastic on plastic used in these calculations
is µs = 0.4. Furthermore, it is assumed that the friction only acts along the outer edge of the
cylinder model since this requires the most torque to overcome. Using Equation 4, the force
required to accelerate the end-effector component from standstill at the required rate can be
calculated as shown in Equation 5

FArA−Ff sr f s = IOα (5)

FA = 81.52×10−3 N (6)

where rA and r f s are the distances between the point of force application and the centre of
rotation O and for the forces FA and Ff s respectively. Since the gear on the motor shaft is to
be 3D printed, its mass is taken to be negligible. Since the pitch circle radius rm of the motor
gear is 10 mm, the torque τ required to be generated by the motor in order to exert FA on the
end-effector rotor is calculated as shown in Equation 7 below.

τ = FA× rm = 815.2×10−6 N ⋅m (7)

(8)

Using an engineering safety factor of 2 to account for inaccuracies in modeling the end-
effector rotor and to ensure there is at least a 50% torque margin for the motor, a minimum
required motor holding torque of 1.63×10−3 N ⋅m or 16.63 g ⋅cm. Using the Wantai Motor
product line as a reference, the smallest available stepper motor is the 20BYGH202 model
which has a holding torque of τH = 140 g ⋅cm, detent torque of τD = 20 g ⋅cm and a mass of
50 g. The detent torque of the motor refers to the amount of torque generated by the motor
when the windings of the motor are not energized. The holding torque, on the other hand, is
the amount of torque required to rotate the motor one step when the rotor is stationary but the
windings are energized. The running torque τR of the motor is limited by the motor’s current
rating and at low speeds is equal and can be calculated using Equation 9 below.

τR = τH −2τD (9)

The running torque of the 20BYGH202 model is calculated as τR = 100 g ⋅cm which comfort-
ably meets the torque requirement of 16.63 g ⋅cm. The excess torque can be used to implement
greater acceleration or micro-stepping functionality. In the interest of keeping costs down for
the project, the ISG component bank was considered when sourcing the motor. The smallest
NEMA 8 motor contained in the bank was the 20BYGH406 which has a holding torque of
τH = 260 g ⋅ cm, detent torque of τD = 50 g ⋅ cm and a mass of 80 g which yields a running
torque of τR = 160 g ⋅cm which also comfortably meets the torque requirement. The additional
30 g of mass was considered acceptable for the project and, therefore, the 20BYGH406 model
was selected as the end-effector motor.

15

C.H. Conroy Part 3. Main Report

3.2.2 Vacuum Actuation Mechanism

A syringe was used as the basic component to generate the vacuum within the vacuum system.
The syringe has a maximum range of linear travel of 78 mm. The servo has a maximum
range of rotational motion of 180○. Therefore, in order to achieve the full range of linear
motion for the syringe, the mechanism connecting the servo to the syringe needs to translate
the servo’s 180○ of rotational motion into 78 mm of linear motion. A rack and pinion system
is a mechanism that is commonly used for converting translational motion into rotational
motion. Therefore, half of the circumference of the pitch diameter circle of the gear needs
to be equal to the length of linear travel for these specifications to be achieved. A gear with
a pitch diameter of 49.66 mm satisfies this requirement. Therefore, it was selected to use
a gear with a pitch diameter of 50 mm. The mechanical connection mechanism to connect
the syringe to the servo motor is shown as a 3D model in Figure 1a as well as the physical
realisation in Figure 1b below.

(a) 3D vacuum actuator model (b) Physical vacuum actuator

Figure 1. Vacuum generation mechanism for the end-effector mechanism.

3.2.3 End-Effector Assembly

The end-effector mount was designed to fulfil to following requirements:

• It must provide a mounting structure for both the 20BYGH406 stepper motor and
the vacuum rod such that the gear components of each are aligned and able to mesh
correctly.

• It must facilitate at least 5mm of translational motion of the vacuum rod along the
z-axis.

• It must provide a connection point for connecting the end-effector mount to the rest of
the robotic subsystem.

• It must facilitate assembly of the end-effector mount, 20BYGH406 stepper motor and
vacuum rod components.

16

C.H. Conroy Part 3. Main Report

Figure 2a shows the end-effector mount and supporting components that were designed to
meet these requirements along with the 20BYGH406 stepper motor and vacuum rod. The
end-effector mount, motor mount and vacuum rod top mound were originally designed as
a single piece. The vacuum rod top mount was separated as a component to facilitate the
insertion of the vacuum rod into the end-effector assembly. The motor mount was similarly
separated to facilitate the manufacturing of this part using FDM 3D printing methods as
the overhang was not capable of being printed without support. Figure 2b shows the same
components when assembled to form the complete end-effector mount assembly.

(a) Disassembled end-effector mount (b) Assembled end-effector mount.

Figure 2. End-effector mount assembly that provides the mechanical connection
between the end-effector mechanism and the robotic manipulator.

3.2.4 Z-Axis Assembly

For the purposes of this project, the z-axis assembly is defined as the collection of mechanical
components that move linearly along the z-axis when the z-axis drive mechanism is activated.
In the case of this project, the z-axis drive mechanism is included in the z-axis assembly.
There are many different approaches to the z-axis mechanism. One of the most common
approaches which is often used in CNC applications involves the use of a linear guide which
is fixed with respect to the motion of the z-axis assembly. The z-axis drive mechanism is also
fixed with regards to the z-axis assembly. In other words, when the z-axis drive is activated,
the z-axis assembly moves relative to the linear guides and the linear drive. The advantage of
this approach is that the moving mass of the z-axis assembly is minimised as the linear guides
and the z-axis drive mechanism are fixed relative to the motion. The linear bearings form part
of the z-axis assembly in this case. The disadvantage of this approach is that a connecting
component is required to connect the end-effector to the point at which the linear bearings
connect to the linear guides. As such, the greater the range of motion along the z-axis that
is required, the longer this connecting element has to be. This introduces a potential area of
play as the connecting component is prone to a greater degree of flex the greater its length is.

17

C.H. Conroy Part 3. Main Report

Therefore, this approach is only suited to tasks in which the range of motion along the z-axis
is minimal.

Another variation of this approach is to include the linear guides as well as the z-axis drive
as part of the z-axis assembly that moves along the z-axis. In this arrangement, the linear
bearings are fixed with regards to the motion of the z-axis assembly. The disadvantage of
this approach is that there is greater moving mass along the z-axis but this is allows a greater
range of motion to be achieved along the z-axis. Since the nature of this project requires a
reasonably large range of motion along the z-axis, this latter approach was selected.

With the approach including both the z-axis drive mechanism as well as the linear guides as
part of the z-axis assembly, there are two primary design decisions. These are with regards
to the selection of the linear guide components as well as the selection of the linear drive
mechanism. The most popular drive mechanisms are the lead screw drive solution and the
timing belt based drive mechanism. Timing belts are beneficial when the load needs to be
moved over a relatively large distance at a relatively high speed. However, they generally
require larger motors with more torque. Therefore, they are suited to motion along directions
where they are not working against gravity. Lead screw drives, on the other hand, generally
require small motors with less torque to drive the same load and are suited to moving loads
slowly and accurately over small distances. Since the z-axis motor forms part of the moving
z-axis assembly in the design approach discussed above, a smaller motor is preferable to
reduce the moving mass of the assembly. Secondly, the range of motion along the z-axis is
relatively small compared to the range of motion required along the x and y axes. Therefore a
lead screw drive approach was selected for the z-axis assembly.

There are two popular linear guide mechanisms with regards to motion along the z-axis. The
first is the linear rail guide which has excellent characteristics when it comes to resisting
forces and torque in any other direction than its line of travel. Unfortunately, these preferable
characteristics come at a cost. The linear rails in themselves are not completely stiff and need
to be mounted to a supporting structure such as an aluminium v-slot extrusion which would
increase the moving mass of the z-axis assembly to an unreasonable level. Secondly, the
financial cost of the linear rails per relatively high. Therefore, linear rails were not selected
for linear motion along the z-axis. Rather the alternative linear guide mechanism, namely
linear rods, was selected instead. Specifically, 8mm diameter chromed steel linear rods were
selected since they are one of smallest linear rod diameters available and the vertical nature of
the z-axis assembly does not exert much torque on the linear rails. Figure 3b shows how all of
these components are integrated to form the final z-axis assembly.

3.2.5 Z-Axis Mount

It was decided to use aluminium v-slot extrusions as the foundation of the robotic subsystem
primarily due to the design flexibility offered this structure. The profile of the extrusion offers
considerable stiffness required by the frame structure as well as mounting locations along
any position of the structure by means of T-nuts. Furthermore, the v-shape present along the
grooves in the extrusion allow the extrusion to be used as a linear guide. The extrusion was
not considered as an option for a linear guide in the z-axis assembly due to its comparatively
large mass compared to the mass of the z-assembly. However, in comparison to the mass of

18

C.H. Conroy Part 3. Main Report

(a) X-axis assembly. (b) Z-axis assembly.

Figure 3. Assembled z-axis assembly and its integration into the x-axis assembly.

the x-axis assembly, the mass of the extrusion is much more reasonable and offers greater
structural support in comparison to other linear guides such as linear chromed steel rods.
The fact that the aluminium v-slot extrusion approach was selected for the rest of the robotic
subsystem structure combined with the reasons discussed earlier was considered sufficient to
select an aluminium extrusion as the x-axis linear guide. To assist in countering the torque
generated about the x-axis by the z-axis assembly, it was decided to use a 2040 aluminium
v-slot extrusion as opposed to a 2020 aluminium v-slot extrusion.

Linear motion along the aluminium v-slot extrusion is facilitated by v-slot wheels that run
along the v-shaped grooves of the extrusion. Therefore, a need for a component to connect
the z-axis assembly to the x-axis aluminium v-slot extrusion arose. The specific requirements
of the required component are outlined below:

• The component needs to connect the 4 v-slot wheels positioned to run along the 2040
aluminium v-slot extrusion to the 4 linear bearings through which the linear chromed
steel rods of the z-axis assembly run.

• The component needs to accommodate the excess movement required by the eccentric
nuts used by half of the v-slot wheels.

• The component needs to provide mounting points for the timing belt on either side of
the component.

• The component needs to provide a mounting point for the lead screw nut.
• The component needs to accommodate the length of the 8mm diameter to 5mm diameter

rigid coupling used to attach the lead screw to the z-axis motor in the z-axis assembly.
This accommodation allows the z-axis motor to move lower along the z-axis relative to

19

C.H. Conroy Part 3. Main Report

the fixed linear bearings. This results in a shorter moment arm to the z-axis motor and
reduces the torque about the x-axis.

• The component needs to be capable of being manufactured using FDM 3D printing
techniques.

• The component needs to support assembly with all of its supporting components.

Figure 4a shows the z-axis mount developed to meet these requirements with various design
features relating to these requirements highlighted. The walls of the eccentric spacer measure
1.76 mm and 0.34 mm. That means the bolt may be offset a maximum of 0.71 mm in any
direction from the centre of the outer radius of the eccentric spacer which is accommodated
in the design by the feature identified as the eccentric M5 nut slot. Figure 4b shows the z-axis
mount assembled. The 8mm pitch lead screw nut can be seen centred near the bottom of the
component. One of the timing belt clamps can be seen placed over the timing belt clamp slot
on the side of the z-axis mount.

(a) Plain z-axis mount (b) Assembled z-axis mount

Figure 4. 3D design of the z-axis mounting component and its integration with
supporting components.

3.2.6 X-Axis Assembly

For the purposes of this project, the x-axis assembly is defined in a similar manner to the z-axis
assembly. Specifically, the x-axis assembly is the collection of components that move linearly
along the x-axis when the x-axis drive motor is activated. Similar to the z-axis assembly, a
decision needs to be made regarding whether to position the x-axis drive motor as part of the
x-axis assembly or not. There is no significant benefit to including the x-axis motor as part
of the x-axis assembly either than it potentially reduces the complexity of the x-axis mount
which no longer needs to support the motor as well. However, this is offset by the complexity
increase in the z-axis mount which would need to include a mounting point for the x-axis
motor. Furthermore, mounting the motor in this manner would increase the mass of the x-axis

20

C.H. Conroy Part 3. Main Report

assembly which would require a larger motor with more torque to drive. For these reasons, it
was selected to not include the x-axis motor in the x-axis assembly. Note, the x-axis assembly
does not include the x-axis linear guide in the form of the 2040 aluminium v-slot extrusion as
it does not move when the x-axis drive is activated.

The second design consideration is the selection of the drive mechanism. Again, a lead screw
approach was considered against a timing belt based approach. In this situation, the drive
mechanism does not need to work directly against gravity as was the case with z-axis assembly.
Furthermore, the range of motion of the x-axis assembly is significantly greater than that
of the z-axis assembly. Based on these factors, in conjunction with the discussion of the
drive mechanisms covered during the z-axis assembly analysis, the timing belt approach was
selected. Due to the existence of the v-wheels to connect the z-axis mount to the aluminium
extrusion, it was identified as being significantly more complicated to route the timing belt
with the flat face parallel to the base plane. However, there were no obvious restrictions in
routing the timing belt with the front face parallel to the x-axis aluminium v-slot extrusion.
Furthermore, the aluminium v-slot extrusion facilitates the routing of the far side of the belt
through the centre of the extrusion. For these reasons, it was decided to route the timing belt
in this manner. Therefore, with all of the above considered, the x-axis assembly is defined
to only consist of the z-axis mount as well as the z-axis assembly. Figure 3a shows x-axis
assembly positioned on the x-axis aluminium v-slot extrusion.

3.2.7 Y-Axis Assembly

For the purposes of this project, the y-axis assembly is defined in a similar manner to the
z-axis and x-axis assemblies. Specifically, the y-axis assembly is the collection of components
that moves linearly along the y-axis when the y-axis drive is activated. At this point in the
design, the x-axis assembly is the highest level component of the robotic subsystem. The
x-axis assembly runs along the x-axis aluminium v-slot extrusion. In order to introduce linear
motion along the y-axis, both of these components need to be translated and therefore will
both form part of the y-axis assembly.

In order to facilitate linear motion along the y-axis, linear guides need to be introduced into
the design. Again, the most popular two linear guides were considered, namely the linear
rail and the linear chromed steel rod. A consideration that applies to the y-axis motion that
did not apply to the linear guides used on the other axes is the fact that the y-axis linear
guides will always be fixed relative to the robotic structure. Therefore, weight is not a
consideration in the selection of the linear guides. Furthermore, it has already been noted
that aluminium v-slot extrusions are used to form the frame of the robotic subsystem. These
extrusions facilitate simple mounting of linear rails by means of T-nuts. Furthermore, all of the
mechanical advantages of the linear rail over the linear chromed steel rod as discussed earlier
still apply. Since the y-axis assembly has the greatest mass of any of the moving components,
the mechanical advantages offered by the linear rail were considered more relevant here than
in earlier parts of the design. V-wheels were also considered as a means of linear motion
along the v-slot aluminium extrusion. However, exploration of potential designs using this
mechanisms exhibited many issues with routing the timing belt for the x-axis as well as the
y-axis. Furthermore, the aluminium spacers would introduce additional length along the

21

C.H. Conroy Part 3. Main Report

x-axis without any increase in the range of motion along the x-axis.

For these reasons, the linear rail was selected as the linear guide along the y-axis. Furthermore,
since both sides of the x-axis aluminium v-slot extrusion need to be supported, it was decided
to use two linear rails, one on either side of the x-axis aluminium extrusion. The MGN12H
linear bearing acts as the connection between the linear rail and the load item. Therefore, a
requirement for two components to connect both ends of the x-axis aluminium extrusion to
the MGN12H bearings arose. The requirements of the first component are as follows:

• The component needs to connect the left side of the x-axis 2040 aluminium v-slot
extrusion to the left MGN12H linear bearing.

• The component needs to provide a mounting point for the 42BYGHW609 stepper motor
such that the motor is in a position to drive the x-axis timing belt.

• The component needs to provide a timing belt clamping point on both sides of the
component for the left y-axis timing belt.

• The component needs to facilitate the routing of the x-axis timing belt.
• The item needs to provide a mounting point for the end piece of the drag chain to

facilitate the routing of wires and tubing originating from the z-axis assembly as well
as the 42BYGHW609 stepper motor cables.

• The component needs to be capable of being manufactured using FDM 3D printing
techniques.

Figure 5a shows the left x-axis mount that was designed to meet these requirements along
with indications of the roles of the various parts of the design. Similarly, the right x-axis
mount was designed in a similar manner and the result is shown in Figure 5b.

(a) X-axis assembly left mount.

(b) X-axis assembly right mount.

Figure 5. Mounting pair for the left and right sides of the x-axis assembly.

22

C.H. Conroy Part 3. Main Report

3.2.8 Final Assembly

The primary requirement of the y-axis drive mechanism is that it needs to be capable of
driving the y-axis timing belts on both the left and right side of the robotic subsystem. The
obvious basis of this mechanism is to use a dual shaft stepper motor with each shaft used to
drive one of the y-axis timing belts. The 42BYGHW920L21B2 stepper motor was selected
for this characteristic. Unfortunately, the length of the stepper motor is not sufficient to drive
each belt directly off each shaft. Instead it was decided to drive only the left side y-axis timing
belt directly off the shaft using a 20 tooth pulley for a 6mm GT2 timing belt with a 5mm
bore. In order to drive the right side y-axis timing belt, the torque needs to be transferred
from the stepper motor shaft to a pulley connected to the timing belt. It was decided to use
an 8mm linear chromed steel rod in order to transfer this torque to a 20 tooth pulley for a
6mm GT2 timing belt with a 8mm bore. An 8mm diameter to 5mm diameter coupling is
required to connect the stepper motor shaft to the 8mm linear rod. The rigid coupling is not
sufficient to support the linear rod along the drive axis. Therefore, two KP08 8mm pillow
block bearings were introduced to support the linear rod. In order to connect the pillow blocks
to the aluminium v-slot extrusion frame of the robotic subsystem, two custom connector
components needed to be designed. Similarly, a component needed to be designed to connect
the 42BYGHW920L21B2 stepper motor to the frame as well. All of the components discussed
above form the y-axis drive mechanism. The final robotic system assembly design is shown
in Figure 6a. The physical realisation of this design is shown in Figure 6b.

(a) Complete robot 3D model

(b) Constructed robot

Figure 6. The Robotic System in both the final designed and final constructed states.

23

C.H. Conroy Part 3. Main Report

3.3 Embedded Robot Controller
The Robotic System required an embedded controller to drive the end-effector mechanism and
the robotic manipulator developed as part of the mechanical robotic component in Section 3.2
as well as to facilitate communication with the PC System. Specifically, in service of these
requirements, the embedded controller needed to fulfill the following functions:

• The controller should provide control signals to control the four robotic manipulator
stepper motors as well as the vacuum mechanism servo motor.

• The controller should capture the pressure sensor reading in the vacuum system.
• The controller should facilitate bi-directional communication with the PC System such

that the PC System can send control commands to and receive status information from
the Robotic Subsystem.

• The controller should distribute energy from a power supply to the components in
the Robotic System including the stepper motors, servo motor, cooling fan (for the
embedded controller) and robot workspace lights.

• The controller should monitor the robotic manipulator limit switches on each Cartesian
axis.

The hardware considerations of the circuit designed to fulfill these requirements are outlined
in Section 3.3.1 while the development of the physical realisation of this circuit in the form
of a printed circuit board (PCB) is presented in Section 3.3.2. Following this, the firmware
implementations developed to fulfill various facets of the embedded controller’s functional
requirements are discussed.

3.3.1 Circuit Design

As noted in the project proposal, the motor drivers for the robotic manipulator stepper motors
were taken off-the-shelf. The DRV8825 stepper motor driver was selected for this purpose
since the driver is capable of supplying up to 1.5 A to the motor which is sufficient for the
selected robotic manipulator motors. Specifically, the DRV8825 driver breakout board was
selected for use in this project. Each DRV8825 driver exposes four output drive pins to control
the current in both coils in the connected stepper motor. Furthermore, the DRV8825 driver
exposes a number of input pins to control the operation of the motor and the driver.

The DRV8825 driver control inputs and status outputs of interest for this project are shown in
Table 3 and their use in this project is detailed in Section 3.3.3. Therefore, the microcontroller
around which the embedded controller is based needs to provide seven digital output pins and
one digital input pin per stepper motor. Furthermore, the STEP pin needs to be controlled
with time-sensitive signals and as such one timer peripheral is required for each stepper motor.
Since the robotic manipulator makes use of four stepper motors, a total of 28 digital output
pins, four digital input pins and four timer peripherals are required in the microcontroller to
control the motors.

24

C.H. Conroy Part 3. Main Report

Pin No. Pin Name(s) Type Description
2,3,4 M0, M1, M2 Input Microstepping resolution selection

5 RESET Input Reset the driver’s step indexer

6 SLEEP Input Place the motor in a low-power sleep state

7 STEP Input Motor rotation direction selection

8 DIR Input Advance the motor one step on rising edge

10 FAULT Output Overheat and overcurrent event flag

Table 3. DRV8825 breakout board control and status pins utilised.1

In order to facilitate serial communication with the PC Subsystem, the UART protocol was
selected as the basis for this communication. The selection was made as the communication
with the PC System was expected to only consist of simple asynchronous control commands
and status updates which are easily supported by UART. The universal serial bus (USB)
interface of the PC System is not directly compatible with the UART serial interface peripheral
and, as such, the CH340G IC was selected as the communication data conversion point
between these two interfaces. The CH340G exposes a transmitter (TX) pin and receiver (RX)
pin for the microcontroller to interface with. Therefore, the microcontroller requires one digital
input pin, one digital output pin and a UART peripheral to support serial communication. The
serial communication component is discussed further in Section 3.3.4

In addition to the stepper motor and UART control pins, a single digital output pin was
required to control the vacuum system servo motor along with a timer peripheral to act as the
time base for the pulse width modulation (PWM) signal. An analog input pin, in conjunction
with a corresponding analog-to-digital converter (ADC) peripheral, was required to capture
the ADP5111 gauge pressure sensor reading. Lastly, for the purpose of reducing the power
consumption of the system in idle state, it was elected to make both the robot workspace
lighting and embedded controller cooling fan controllable through software. To this end, two
additional digital output pins were required in the microcontroller.

In terms of performance, the microcontroller needed to have the computational power to
control the four stepper motors almost simultaneously using acceleration profiles. At the
same time, the microcontroller needed to control the vacuum system servo motor, monitor the
vacuum system pressure and support serial communication with the PC System. Furthermore,
the use of microstepping to achieve smooth stepper motor motion (see Section 3.3.3) also
increased the computational load as more step pulses needed to be sent to the stepper motor
drivers per unit time. The use of an 8-bit microcontroller was considered since it could
potentially achieve this performance with highly optimised code. However, in general, 32-bit
microcontrollers offer greater computational power which facilitate greater leeway in the
stepper motor control computations. Furthermore, the current trend in industry, especially in
the 3D printing space, is towards 32-bit controller boards. For these reasons, it was decided
to use a 32-bit microcontroller as the basis for the embedded platform. Lastly, with regards

1The overline notation, PIN, on a pin name indicates the control input or status output is active low.

25

C.H. Conroy Part 3. Main Report

to clock speed, controllers with similar requirements to the controller in this project have
been successfully implemented using 16 MHz microcontrollers. Therefore, 16 MHz was
considered to be the minimum acceptable microcontroller clock speed.

The STM32L072RZT6 microcontroller was selected as the computational foundation for
the embedded controller in this project since it satisfied all the digital I/O, peripheral and
computational speed requirements discussed above. Note that this microcontroller is part of
the STMicroelectronics low-power microcontroller range. The low-power property of this
range wasn’t strictly necessary for this project since the Robotic System uses mains electricity
for power. However, due to availability issues resulting from the global semi-conductor
shortage, the STM32L072RZT6 was chosen over similar microcontrollers that would not be
available for the foreseeable future.

3.3.2 PCB Design

Before the development of the PCB began, a breadboard based prototype of the embedded
controller was first created to identify any issues present with the circuit design. In order to
provide breadboard access to the SMD STM32L072RZT6 microcontroller, the device was
soldered to a TQFP breakout board with a pin pitch of 0.5mm. Due to the fine pitch of the
pins, solder flux was required to be used in conjunction with the drag solder hand soldering
technique for the process to be successful. Furthermore, several bridges formed during the
initial drag solder pass which were removed using solder wick. Finally, the solder flux residue
was cleaned using IPA. The final robotic controller prototype is shown in Figure 7.

Figure 7. Embedded robotic controller prototype.

After the prototype controller was confirmed to be functioning correctly, the PCB design
process was initiated. The PCB design was developed using the KiCAD schematic capture
and PCB design software. The design process consisted of two steps. The first step involved
the development of the electrical design in which all the electrical component pins were

26

C.H. Conroy Part 3. Main Report

assigned to electrical nodes. In other words, the component connections were defined in this
step. This was followed by the PCB component layout and trace routing step. In order to
determine the width of the power supply trace used on the PCB, the maximum current that
could flow on that trace needed to be determined based on the current ratings of the constituent
components. The maximum current ratings of each of the components are listed below:

• 42BYGHW920L21B2 stepper motor - 2.2 A
• 42BYGHW609 stepper motor - 1.7 A
• 35BYGH312P1 stepper motor - 1.2 A
• 20BYGH406 stepper motor - 0.6 A
• DS3118MG servo motor - 2 A
• STM32L072RZT6 microcontroller - 105 mA
• CH340G chip - 30 mA.

Based on the sum of these values, the initial power connection trace needed to support 5.835
A of current. A current value of 6 A was used to incorporate an engineering safety margin.
Furthermore, a maximum temperature rise tolerance of 10 ○C and a copper thickness of 1oz/ft2

was used in the calculation of the trace width. Based on this, it was calculated that a trace
width of at least 140 mil, or 3.56 mm, was required. A similar procedure was used to calculate
the widths of power traces that supported fewer components. For the thickness of the PCB
traces, it was noted that 2 oz outer copper weight is generally notably more expensive than 1
oz outer copper weight. Therefore, the latter was used for traces for the PCB developed in
this project.

The D+ and D- lines for the USB portion of the USB to serial converter constitute a differential
pair. As such, a number of PCB layout guidelines needed to be adhered to, to ensure the
integrity of the differential pair signal. The following guidelines were followed for this
purpose:

• The use of vias should be minimised.
• The differential pair should be isolated from the other traces.
• Differential pair traces should mirror each other as far as possible.
• The lengths of each trace in the differential pair must be identical even if symmetry

needs be sacrificed to achieve this.

In this project, vias were not used at all for the differential USB signal traces. Additionally, the
trace isolation condition was satisfied by enforcing a clearance of three standard trace widths
from other traces for a total clearance of 0.75mm. Similarly, for both the STM32L072RZT6
external oscillator and the CH340G external oscillator, the following guidelines were adhered
to during the PCB layout process:

• The crystal and its supporting capacitors should be placed as close as possible to the
oscillator input and output pins on the microcontroller.

• The trace length in the oscillator circuit should be minimised.
• The traces in the oscillator circuit should not cross other signal lines.
• Traces should not incur right angle bends.
• The supporting capacitors should share a ground plane.
• The size of loops in the oscillator circuit should be minimised.
• The ground node should not pass under the crystal.

27

C.H. Conroy Part 3. Main Report

• Power and digital signal on other layers of the board should not pass under the crystal.

In addition to the PCB design components discussed above, the PCB was designed in such
a manner that all the components were placed on the top layer of the two layer PCB. The
top layer was referred to as the signal layer since traces were routed on the top layer as
far as possible. Only when necessary, the traces were routed onto the bottom layer to pass
below other traces before being returned to the signal layer by means of vias. This routing
strategy allowed a ground plane fill to be applied to the majority of the bottom plane. This
improved the radio frequency (RF) characteristics of the PCB as higher frequency signal
components could return much more closely to their signal path which minimised the current
loop size. Furthermore, the trace routing was simplified as an electrical node on the signal
plane could be grounded by simply adding a via to the ground plane. The PCB layout with
the routing complete is shown in Figure 8a while the physical realisation of this design after
manufacturing is shown in Figure 8b. A 3D model was created using KiCAD’s rendering
functionality to identify any logistical issues that could arise during the assembly process
due to the 3D form factor of the components. This model is shown in Figure 9a. The final
manufactured PCB after assembly is shown in Figure 9b without the motor drivers inserted.

(a) Embedded controller PCB routing (b) Manufactured controller PCB

Figure 8. Design of the PCB board component and trace layout before and after
manufacturing.

3.3.3 Motor Control

The DS3118MG servo motor used as the actuation driver for the vacuum generation mechan-
ism and has a angular rotation range of 180○. The medium of control for the servo motor is a
PWM signal that has two degrees of freedom which motor responds to. Firstly, the period of

28

C.H. Conroy Part 3. Main Report

(a) Embedded controller PCB 3D model (b) Assembled controller PCB

Figure 9. Final PCB after all components have been assembled.

the PWM signal determines the fraction of the angular rotation range available to the servo
motor. The input period can be set from 3 ms to 20 ms (333 Hz to 50 Hz) where a period of
20 ms corresponds to the full range of rotation for the servo. Since the vacuum generation
mechanism was designed on the assumption that the servo operates with 180○ of rotational
motion, 20 ms was chosen as the PWM period.

The second degree of freedom in control of the servo offered by the PWM signal exists in
the high-time of the pulse, or pulse width. The position of the servo is altered by changing
this parameter between 500µs and 2500µs where the bounds of this range correspond to the
0○ and 180○ servo motor positions2. The release, idle and actuate positions of the vacuum
generation mechanism were selected by setting the PWM pulse width to either 2400µs, 2100
µs or 1500 µs respectively.

As mentioned in Section 3.3.1, the DRV8825 drivers were selected to provide an interface to
the microcontroller to control the stepper motors. This interface includes the STEP control
input, which moves the motor one step3, as well as the DIR control input which indicates the
rotational direction in which the step is taken. The first design consideration in the control of
the stepper motors is the step resolution, or microstepping mode, employed. The microstep-
ping mode selection control inputs M0, M1 and M2 were connected to the microcontroller as
part of the circuit design which allowed the microstepping mode to be selected in software. In
general, increasing the step resolution improves the smoothness of the stepper motor rotation
but also increases the pulse rate required to move the motor at the same speed. This is turn
increases the computational load on the microcontroller.

2This assumes the PWM period is set to 20 ms.
3The size of the step the motor takes is dependent on the microstepping mode configuration.

29

C.H. Conroy Part 3. Main Report

The DRV8825 supports a maximum of 1/32 microstepping.4 Since this project has specific-
ations relating the accuracy of the system but not the speed of the system, the maximum
microstepping mode was selected to reduce vibrations as far as possible. It was noted that
increasing the microstepping resolution did not correspond to an increase in position res-
olution. This is due to the fact that there is an exponential reduction in holding torque in
microstep positions as the microstepping resolution increases. For this reason, the motor
control firmware was designed such that the stepper motors only make use of microstep
positions during the movement phase to reduce vibration and only rest in full step positions.

The simplest form of control for the stepper motors is constant speed control where the
rate at which pulses are sent to the motor is always constant. This was the control initially
implemented. However, when the pulses are started or stopped, a near instantaneous change
in velocity occurred which resulted in a peak in acceleration that induced a mechanical jolt in
the Robotic System. This limited the maximum motor speed that could be used to ensure the
mechanical jolt generated was minimal. To overcome this issue, a linear acceleration profile
was implemented for each stepper motor. This was achieved by altering the period of the
underlying microcontroller timer peripheral for each stepper motor.

3.3.4 Serial Communication

A communication protocol needed to be developed between the robotic controller and the PC
running the system control software. It was noted that the maximum data unit that needed to
be transmitted between the Robotic Subsystem and the PC-based software component was a
command instruction for the robot to move to a target position. Since the position of each of
the robot’s axes was specified by a 16 bit number, eight data bytes were required to contain
this information. Furthermore, an additional control byte was required to distinguish between
the purpose of each data byte for a given packet. Each packet was formed by specifying the
control byte followed with a concatenation of the four data bytes. The definitions assigned to
each of the control bytes are also determined by the direction of transmission and given in
Table 4.

For the serial communication component required to facilitate the use of this protocol, a
word length of 8 bits was selected with no parity bit and 1 stop bit as this is the most
common structure used and there was no reason to choose an altered structure. A baud rate of
115200 bits/s was also selected with the maximum oversampling rate of 16 samples chosen to
minimise the effective noise during data reception.

4For each step in 1/32 microstepping mode, the motor rotates 1/32 of the full step angle.

30

C.H. Conroy Part 3. Main Report

Control
Byte Command Description

PC System to Robotic System
0x1 Wake Place the stepper motors into active state from sleep state.

0x2 Calibrate
Initiate the robot calibration sequence to move along each
and find the limit switch on linear axis.

0x3 Set target position
Set the desired step position on each axis to define the
position to which the robot will move.

0x4
Actuate vacuum
mechanism

Move the vacuum system servo motor to the suction
position.

0x5 Delay
Delay the robot’s command complete return packet by a
short period of time.

0x6
Request pressure
update

Trigger the Robotic System to respond with a packet
containing the pressure sensor reading.

Robotic System to PC System

0x1
Command
complete

Indicates the previously received packet has been processed
successfully.

0x6 Pressure update Sends the current reading of the pressure sensor.

Table 4. Serial communication protocol utilised between the PC System and the Robotic
System.

3.4 Shape Definition Interface

3.4.1 Background

The second system specification for this project requires the development of a PC-based
GUI software component that allows the user to define 3D shapes to be constructed by the
robot using the small construction cubes. Furthermore, this specification also indicates that
this software component must make use of graphical primitives to generate a 3D render of
the shape as part of this process. To this extent, the OpenGL specification was selected
as the basis for the 3D rendering component. DirectX was considered as an alternative to
OpenGL. However, DirectX is only supported for the Windows operating system and XBox
while OpenGL is cross-platform. The C++ QT framework used as the basis for the PC-based
software component is inherently cross-platform and also offers better support for OpenGL
integration which justified its selection for use in this project. It is noted that OpenGL is only
a specification for a graphics API and not an implementation in itself. This API is usually
implemented by the graphics card manufacturers. Furthermore, it is noted that OpenGL can be
considered to be a state machine which is referred to as the graphical context. The behaviour

31

C.H. Conroy Part 3. Main Report

of various OpenGL instructions depends on the state of the OpenGL context.

The foundation of rendering using OpenGL is centred around the use of vertices. Specifically,
a number of vertices are defined as the starting point for various objects to be rendered in
3D. These vertices are assembled into primitive shapes such as lines, triangles, quadrilaterals
and other polygons depending on the OpenGL context. Triangles were used as the primitive
shape created from vertices in this project since it is straightforward to define cubes through
the use of triangles and most OpenGL hardware supports render acceleration for triangles.
Surfaces are created by generating a number of these shapes adjacent to each other with
varying sizes and orientations. These vertices and shapes encounter a number of processes and
transformations when being converted from a description in 3D space to a collection of pixels
on a 2D computer screen. There are approximately six such steps in this process which are
known as the six stages of the graphics pipeline. Two of these steps require an implementation
to be defined when using OpenGL, namely the vertex shader and the fragment shader. These
shaders were written using the OpenGL Shading Language (GLSL)5. In order to define
the positions and orientations of the various objects to be rendered as well as how they are
transformed to 2D space on the screen, a number of coordinate systems and transformation
matrices are required.

The object is described in the local frame l with the origin of the frame of reference usually
located somewhere on or within the object. The world frame w is the space that relates the
position, orientation and scale of all the objects to be rendered together. The matrix that
maps the local frame to the world frame is known as the model matrix, denoted here by MMMwl .
Similarly, the view of the world, usually thought of as a camera, has its own coordinate system
called view space v. The world space is mapped to this view space by means of the view
matrix MMMvw. This defines the point of view the world is seen from. Lastly, it is noted that the
coordinates that are mapped to the screen need to be normalized device coordinates (NDC)
where all vertex values of the coordinate axes are between 0 and 1. Any vertex outside of
this space will not be projected onto the screen. As such, this space is called clip space c
and the projection matrix MMMcv is used to map from view space to clip space. The projection
matrix can be used to define the nature of this clip space and as such can be used to control
the projection perspective.

Lastly, the viewport transform is performed to convert the 3D coordinates to 2D coordinates.
The former three transforms, namely the model, view and projection matrices, are the trans-
forms that were manipulated to transform the vertices accordingly. Each of these matrices
consist of a translation, rotation and scale sub-component of which the order of operations is
important to ensure the correct transform result.

3.4.2 3D Shape Render

The 3D shape to be rendered was approached by first considering how each individual
constituent cube within the shape should be rendered. Since triangles were selected as the
graphical shape primitive, the cube was formed by defining the six cube faces using two

5GLSL is a high-level language with C-style syntax that executes on graphics hardware and allows modifica-
tion of the graphics pipeline.

32

C.H. Conroy Part 3. Main Report

triangles per face. Each triangle was defined by specifying the location of each vertex in
the local coordinate system for a total of 36 vertices to define the entire cube as shown in
Figure 10b. Furthermore, in order to map a texture to the cube face, each triangle vertex was
associated with an NDC in the texture image file shown in Figure 10a such that the entire
texture image was mapped to each cube face. Let pppl

i ∈R3 denote the position of the ith vertex
in the local coordinate system and let ttt i ∈R2 denote the NDC in the texture image associated
with pppl

i . In order to capture the structure and texture of the cube to be rendered, a vertex
information array was defined as

vertices = [pppl
0,ttt0, pppl

1,ttt1, ..., pppl
35,ttt35]. (10)

Vertex attribute pointers were created to indicate the location of the position and texture
coordinates within the vertices array in Equation 10 for the OpenGL context. To render
the cube using this vertex information the vertices array was bound to the current OpenGL
context using various calls to the OpenGL API. However, this resulted in only the front 2D
cube face being rendered on the screen. In order for multiple cubes to be rendered from
different perspectives, the model, view and projection matrices need to be derived and utilised.
The model matrix is constructed by noting that a given cube is mapped from local space to
world space through scaling, rotation and translation operations. Let the matrices SSS ∈R4×4,
RRR ∈R4×4 and TTT ∈R4×4 represent these operations respectively in homogeneous coordinates.
Furthermore, let vvvl

i ∈R4 denote the position of the ith vertex in homogeneous coordinates
in the local frame. Since each cube only needed to be rotated about the y-axis, RRR can be
simplified for only this rotation as RRRy. Additionally, Euler angles were chosen to parameterise
the cube’s orientation since Gimbal lock is not possible with the rotation restricted as such.
Based on this, the model matrix is calculated as

MMMwl = TTT RRRyyySSS, (11)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 Tx
0 1 0 Ty
0 0 1 Tz
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cosθ 0 sinθ 0
0 1 0 0

−sinθ 0 cosθ 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(12)

where (Tx,Ty,Tz) is the translation vector, (Sx,Sy,Sz) is the scaling vector and θ is the angle
of rotation of the cube about the y-axis. The vertices vector was defined in such a manner
that the cube has a side length of 1 unit in the local coordinate system. Since the end-effector
in the Robotic System can only be positioned at a number of discrete step positions, it was
chosen to use steps as the measurement unit for the world space coordinate system in the
Shape Definition component. A physical construction cube has a side length of 64 steps.
Therefore, a scaling factor of 64 steps was used for all axes to form MMMwl . The translation
vector values were obtained from the position state of the centre of a given cube in steps.
Furthermore, the translation vector element Ty was offset by 32 steps to ensure no part of the
cube exists below the plane z = 0 in the world frame.

The cubes in the world space are mapped to the view space next using the view matrix. The
result of this transformation gives the impression that the world space is rendered from the

33

C.H. Conroy Part 3. Main Report

perspective of a camera. This idea was used as the basis to form the view matrix6 using the
camera’s position pppw

c ∈R3, the camera’s focal point pppw
f ∈R3 and the camera’s up direction

vector ûuuw
u ∈R3, all with respect to the world frame. The camera direction7 vector ûuuw

z ∈R3 (i.e.
camera’s positive z-axis) is calculated as

uuuw
z = pppw

c − pppw
f , (13)

ûuuw
z = uuuw

z

∣∣uuuw
z ∣∣

. (14)

With the direction of the camera known, the camera’s right vector ûuuw
x ∈ R3 (i.e. camera’s

positive x-axis) in the world frame is calculated as

uuuw
x = ûuuw

u × ûuuw
d , (15)

ûuuw
x = uuuw

x

∣∣uuuw
x ∣∣

. (16)

Finally, the direction of the camera’s positive y-axis ûuuw
y ∈R3 with respect to the world frame

is calculated as

ûuuw
y = ûuuw

z × ûuuw
x . (17)

The results of Equations 14, 16 and 17 are used to calculate the view matrix as

MMMvw =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ûw
x,0 ûw

x,1 ûw
x,2 0

ûw
y,0 ûw

y,1 ûw
y,2 0

ûw
z,0 ûw

z,1 ûw
z,2 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −pw
c,0

0 1 0 −pw
c,1

0 0 1 −pw
c,2

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

where ûw
x,i, ûw

y,i, ûw
z,i and pw

c,i are the ith elements of ûuuw
x , ûuuw

y , ûuuw
z and pppw

c respectively. The final
transformation that was implemented is the mapping of view space to clip space using the
projection matrix. The points that are clipped are selected based on their location with respect
to a frustum defined in the view frame. Points that fall within this frustum are kept and
converted to NDCs while points outside of this frustum are clipped. The shape of this frustum
defines the nature of the projection. Specifically, if the frustum is a rectangular prism, the
resulting projection is an orthographic projection. However, if the frustum is not a uniform
prism, the resulting projection is a perspective projection. The perspective projection is how
the world appears to the human eye and, therefore, was selected as the projection method for
this project to ease the process of comparing the 3D shape model and the constructed shape.
The projection matrix is defined as

6In this case, the view matrix is also frequently referred to as the LookAt matrix.
7Unintuitively, the camera direction vector points in direction opposite to the direction the camera is facing.

34

C.H. Conroy Part 3. Main Report

MMMcv =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

n
r 0 0 0
0 n

t 0 0
0 0 −(f+n)

f−n
−2 f n
f−n

0 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

where n and f are the near and far z-planes of the projection frustum respectively in the view
frame. Furthermore, r and t are the right and top bounding x- and y-planes respectively for
the near frustum z-plane. Equation 19 assumes that the frustum exhibits x and y symmetry
such that the left and bottom bounding planes need not be specified. It was found to be more
intuitive to parameterise the projection in terms of the frustum angle α and aspect ratio β of
the frustum z-planes alongside f and n. To this end, n/r and n/t in Equation 19 are computed
as

n
r
= 1

α tan(β /2) , (20)

n
r
= 1

tan(β /2) . (21)

(a) Cube face texture (b) Triangle components (c) Textured cube

Figure 10. Stages of the process to render a construction cube using OpenGL.

3.5 Computer Vision System
The design of the overall system facilitates open-loop operation of the robotic subsystem
when the computer vision subsystem is excluded. This means that the system is capable of
arbitrary shape construction without visual feedback during the construction process, given
that the initial cube positions are known. However, should a cube be dropped during this
process, the system would not be capable of an intelligent response8. Furthermore, any
significant disturbance of the shape under construction would be undetectable by the system.
The computer vision system is required, and was designed, to address these two cases. In
the first case, the dropped cube should be detected and localised with respect to the robot

8The system would be able to detect the dropped cube condition through the pressure sensor in the vacuum
system detecting the unplanned pressure decrease.

35

C.H. Conroy Part 3. Main Report

coordinate system if it falls within the camera’s field of view. Secondly, when damage to
the structure is detected in the image input data, the computer vision system should signal
a construction halt condition. This section begins with an overview of the cube detection
approaches investigated. A description of the method used to map points detected in the
image frame to the world frame follows in Section 3.5.2. These sections lay the foundation
for the integrated computer vision algorithm and supporting functions discussed from Section
3.5.3 onward.

3.5.1 Cube Feature Investigation

Detection of an object in a single-view image generally involves the identification of features
in the image which can be compared to a template set of features for the desired object to
determine its presence and location in the image. Furthermore, certain features may be used
to generate further information about the object beyond feature matching. For example, edges
and corners may be used to identify planes which are combined to identify the presence of
a cuboid. The OpenCV C++ library was utilised as the source of various pre-written image
processing and machine vision functions required to create a prototype of the feature detection
process. Specifically, a set of cube images were captured and the Canny edge detector, Harris
corner detector and SIFT feature descriptor implementations were utilised to detect edges,
corners and features in the cube images respectively.

The primary challenge encountered in cube detection process was the extraction of useful
feature information from individual cubes. The aluminium cubes used in this project are a
singular shade of grey with an almost textureless surfaces which offers little unique information
to detect the cubes. As a result, the prototype feature detection algorithms discussed above
performed poorly and did not extract a sufficient number of features to uniquely detect the
cubes. Specifically, in even lighting conditions, the Canny edge detector failed to identify
internal edges within the outer bounding contour. Similarly, the Harris corner detector failed
to consistently identify the corners of the cube while the SIFT algorithm failed to identify a
sufficient number of features on the cube itself. The Hough transform parameterised for lines
was also explored with limited success.

The process of image segmentation was also explored to isolate the cubes from the background.
Histogram plots showing pixel intensity distributions for each of the RGB colour channels
were generated from images containing cubes with various monochrome background colours.
Each of the colour channels exhibited nearly identical distributions which indicated the
primary information in these images was grey-scale intensity information. The grey-scale
histogram information from the images with a matte black background exhibited a peak at
greater pixel intensity values corresponding with the cube pixels. Based on this, the cubes
were successfully segmented in the image through application of a binary threshold.

In even lighting conditions, the cube faces could not be distinguished from each other with a
significant degree of reliability. This presents a problem as face segmentation is necessary
for cube pose estimation. However, when the dominant lighting source was placed directly
above the cubes, a peak in the pixel intensity histogram was observed which corresponded to
the top face of the cube. This allowed the segmentation of the top face with a great degree
of reliability. If the scene is constrained such that cubes are the only objects present and the

36

C.H. Conroy Part 3. Main Report

assumption is made that a cube face is always parallel to the base plane, then the segmented
top cube face is sufficient information to detect a cube and uniquely determine its orientation
about the z-axis. Therefore, this approach was selected as the basis of the computer vision
cube detection component.

3.5.2 3D Localisation

The location of the cube with respect to the robot needs to be determined from the location
of the cube in the image for the system controller to make decisions based on the location
of the cube and for the robot to interact with the cube. For the purposes of this project, the
robot coordinate system was defined to be equivalent to the world coordinate system. This
problem is referred to as object localisation and requires a solution to map an arbitrary point in
image coordinate system, denoted by pppi ∈R2, to a corresponding point in the world coordinate
system, denoted by pppw ∈R3. The 3D camera coordinate system is useful as an intermediate
frame to relate the world frame to the image frame. Let a point in the camera coordinate
system be denoted by pppc ∈R3.

The pinhole camera model was used as the foundation for the mapping methods discussed
here. This model requires that several parameters about the camera and its orientation to be
known. These parameters can be divided into two categories, namely intrinsic and extrinsic
parameters. Intrinsic parameters describe internal properties inherent to the camera itself
and include the principal point (cx,cy) as well as the focal lengths (fx and fy) of the camera.
Extrinsic parameters describe the location and orientation of the camera with respect to the
world coordinate system and include the rotation and translation transformations that are
required to be performed to map arbitrary point pppw to pppc. These transformations are captured
by the rotation-translation matrix [RRR∣ttt].

The intrinsic parameters of the camera can be expressed as a calibration matrix KKK defined as

KKK =
⎡⎢⎢⎢⎢⎢⎣

fx s cx
0 fy cy
0 0 1

⎤⎥⎥⎥⎥⎥⎦
(22)

The parameter s in Equation 22 captures the skew of the sensor axes that occurs as a result of
the optical axis not being exactly perpendicular to the sensor plane. However, for practical
purposes s can be set to 0. Since the extrinsic parameters are captured by the rotation-
translation matrix [RRR∣ttt], both the intrinsic and extrinsic parameters are captured by the product
of this matrix and the calibration matrix KKK. This 3 x 4 matrix product is referred to the camera
matrix PPP and expressed mathematically as

PPP =KKK[RRR∣ttt]. (23)

The camera matrix is sufficient to map the world coordinate system to the the image coordinate
plane provided that the pinhole camera model is used and no lens distortion effects are present.
This mapping is defined as

37

C.H. Conroy Part 3. Main Report

s

⎡⎢⎢⎢⎢⎢⎣

u
v
1

⎤⎥⎥⎥⎥⎥⎦
= PPP

⎡⎢⎢⎢⎢⎢⎢⎢⎣

X
Y
Z
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(24)

where (X ,Y,Z) are the coordinates of a given point in the world coordinate system pppw, (u,v)
are the coordinates of the corresponding point in the image coordinate system pppi and s is
simply a scaling factor. It is noted there is a loss of depth information when mapping from
the world frame to the image frame. This is observed mathematically in Equation 24 since
PPP is not a square matrix and not invertible as a result. Therefore it is not possible to map
from the image frame to the world frame without an additional piece of information. It was
postulated that this piece of information could be obtained given that the length of the cube
edge is known in the world frame. However, the cube side length differential was not found to
be sufficiently large between vertical layers to make this distinction. Instead it was decided to
provide the z coordinate of pppw based on the horizontal plane layer a cube was expected to be
detected in. This is reasonable given that a cube dropped away from the source and structural
cubes will always be found on the base plane.

In order to solve for the the world coordinates given the image coordinates, camera matrix KKK
and world coordinate plane Z using the pinhole camera model, Equation 24 is expanded and
rearranged as

s

⎡⎢⎢⎢⎢⎢⎣

u
v
1

⎤⎥⎥⎥⎥⎥⎦
=KKK

⎛
⎜
⎝

RRR

⎡⎢⎢⎢⎢⎢⎣

X
Y
Z

⎤⎥⎥⎥⎥⎥⎦
+ ttt

⎞
⎟
⎠
, (25)

RRR−1MMM−1s

⎡⎢⎢⎢⎢⎢⎣

u
v
1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

X
Y
Z

⎤⎥⎥⎥⎥⎥⎦
+RRR−1ttt. (26)

In order to solve for the unknown scaling factor s, the intermediate vectors xxx and yyy are defined
as

xxx =
⎡⎢⎢⎢⎢⎢⎣

x1
x2
x3

⎤⎥⎥⎥⎥⎥⎦
= RRR−1MMM−1

⎡⎢⎢⎢⎢⎢⎣

u
v
1

⎤⎥⎥⎥⎥⎥⎦
, (27)

yyy =
⎡⎢⎢⎢⎢⎢⎣

y1
y2
y3

⎤⎥⎥⎥⎥⎥⎦
= RRR−1ttt, (28)

such that Equation 26 can be rewritten as

sxxx =
⎡⎢⎢⎢⎢⎢⎣

X
Y
Z

⎤⎥⎥⎥⎥⎥⎦
+yyy. (29)

Since the camera matrix PPP is given, the rotation matrix RRR, translation matrix ttt and intrinsic

38

C.H. Conroy Part 3. Main Report

matrix MMM in Equations 27 and 28 are known. Consequently, s can be computed as

s = Z+y3

x3
. (30)

Finally, with s known, it is trivial to make use of Equation 29 to obtain the world coordinates.
For completeness, this is expressed as

⎡⎢⎢⎢⎢⎢⎣

X
Y
Z

⎤⎥⎥⎥⎥⎥⎦
= sxxx−yyy. (31)

In order to make use of the mathematical tools discussed above, the intrinsic parameters and
extrinsic parameters of the camera needed to be determined. The intrinsic parameters were
determined using a checkerboard calibration. A number of images of the checkerboard were
captured at various poses in the robotic subsystem’s workspace. The findChessboardCorners,
calibrateCamera and getOptimalNewCameraMatrix OpenCV library functions were used in
the camera calibration process. The camera’s extrinsic parameters were obtained using the
EPnP variation of the solvePnP function from the OpenCV library which serves as a solution
to the PnP problem. This requires point correspondences which refers to points that have a
known location in both the image frame and the world frame. Given at least four of these
points, it is possible to estimate the rotation and translation matrices.

3.5.3 Top-Level Design

The System Controller maintains a non-probabilistic belief state for the location and orientation
of each cube with respect to the robot’s coordinate system. Furthermore, four mutually
exclusive states are used to distinguish between cubes. A source cube is a cube that is believed
to be in its known initial position while a structure cube is believed to have been successfully
placed in its designated position within the 3D shape under construction. If no unexpected
events occur during the construction process, each cube will only exist in either of one these
two states. The two unexpected events the system is expected to deal with are the dropped
cube case and the structural damage case. If the vacuum system pressure sensor detects that a
cube is dropped during manipulation by the robot, the cube is classified as a missing cube. A
cube that is detected by the Vision System that is not in an expected source cube or structure
cube location is classified as an independent cube. The System Controller is able to deal with
both the dropped cube case and the structural damage case when the position and orientation
of all independent cubes with respect to the robot’s coordinate system are provided. As such,
the purpose of the Vision System is to detect and localise all independent cubes with respect to
the robot given the image input data of the robot’s workspace. The expected location of the
source cubes and the structure cubes with respect to the robot for a given time instance are
also required as input to distinguish these cubes from the independent cubes.

Figure 11 shows the high level steps the Vision System performs each time it is instructed
to process the image input data captured by the camera. The findings from the cube feature
investigation performed in Section 3.5.1 guided the design of this process. The input image

39

C.H. Conroy Part 3. Main Report

Preprocess
image

Detect
outer

contours

Identify
fiducial

contours

Compute extrinsic
camera parameters

using fiducials

Discard contours
outside computer

vision bounding box

Classify remaining contours
as source cubes, structure

cubes or independent cubes

Discard
contours

below area
threshold

Start

Compute
independent
cube pose

Stop

Input: Image data, source cube locations, structure cube locations
Output: Independent cube poses

Key: Independent of extrinsics Extrinsics computation Dependent on extrinsics

Figure 11. Flow diagram showing the steps in the integrated computer vision process.

is expected to be in RGB color format and may be of arbitrary size. A preprocessing step
is applied to the image in which the image is first converted to grey-scale format. This is
followed by the application of a Gaussian blur function to eliminate high-frequency noise
within the image that appears as local outlier pixel intensities. Finally, a fixed binary threshold
is applied to the image as the initial step to segment the top faces of the cube, as discussed in
Section 3.5.1. This step also segments the fiducial markers, the design of which are discussed
later in Section 3.5.4.

Following the preprocessing step, contour detection is applied to the binary image to convert
the connected 1-components within the image to a discrete set of elements that can be
processed individually. The cubes and fiducials are assumed to be surrounded by the plain
black background of the robot’s base plane and, as such, only the outer contours are detected
to ensure the patterns within the fiducial are not identified as separate elements to the fiducial.
Finally, a number of contours originating from image artifacts that are not cubes or fiducials
are also detected as part of this step. In order to reduce the amount of processing required
during later contour classification steps, the area enclosed by each contour is computed and
all contours with an area significantly smaller than that of cubes and fiducials on the base
plane are discarded.

With the set of fiducial and cube candidate contours compiled, the next phase of the algorithm
is concerned with the classification of these contours. Firstly, the contours that enclose
fiducial markers are identified as part of the fiducial identification step (see Section 3.5.4)
which includes the extraction of the unique fiducial identifier values. The location of each
fiducial in the world coordinate system is known and retrieved from a look-up table based on
the fiducial identifier. The location of the fiducial within the image coordinate system is taken
as the location of the fiducial contour centroid. With this information, a point correspondence
between the world coordinate system and image coordinate system can be formed for each
fiducial and used to compute the extrinsic camera parameters as discussed in Section 3.5.2.
Furthermore, the methods to map between the image frame and world frame may now be used
with the camera extrinsics calibrated. The base plane of the robot was controlled such that
the workspace only contains cubes and fiducials. By restricting the remaining contours under

40

C.H. Conroy Part 3. Main Report

consideration to only those that are detected within the robot’s workspace, these contours are
guaranteed to be artifacts of construction cubes since the fiducial contours have already been
identified.

The rectangular bounding region of the robot’s workspace is aligned with the world coordinate
system. As such, it is trivial to determine if a point falls within this region if the point is also
defined in the world frame. Therefore, to determine if the centroid point of a given contour
in the image frame falls within the bounding region, the point is first projected to the world
coordinate system using Equation 31. As noted in Section 3.5.2, when projecting from image
space to world space, it is necessary to specify the Z plane of projection in the world frame.
Since the camera captured images from the vertical perspective, it was considered sufficient
to project the contour centroids to the base plane, Z = 0. Following this step, all contours with
centroids external to the bounding region are discarded.

With the remaining contours assumed to only be image artifacts originating from cubes, the
contours need to be classified as either source cube, structure cube or independent cube
contours. This classification is based on expected locations of the source cubes and structure
cubes in the world frame as provided to the Vision System by the System Controller. For the
source cubes, the proximity of the centroid of each contour to the centre of the top face of each
source cube is considered. If the contour centroid is considered sufficiently close9 to the top
face centre of any of the source cubes, the contour is considered to be a source cube contour.
The same applies for structure cubes. To facilitate the proximity calculations, the contour
centroid is projected to the world coordinate system for each cube the contour is compared
with using Equation 31. The Z coordinate of the top face of the cube under consideration is
used as the Z plane of projection in the world frame. The world frame Euclidean distance
between the projected centroid point and the cube top face centre is computed as the measure
of their proximity. If a contour is classified as neither a source cube nor a structure cube
contour, it is assumed to be an independent cube contour. Finally, The orientation and location
of each detected independent cube is estimated as outlined in Section 3.5.6.

3.5.4 Fiducial Identification

The location of the fiducials within the image input data provide the corresponding image
frame coordinates to the known world coordinates of the fiducials to form point correspond-
ences. It has been found that a greater number of point correspondences generally leads to an
improved solution to the PnP problem. As such, eight fiducial markers were placed at eight
known locations on the robot’s base plane. Each fiducial was structured as a square with a
white border with an imaginary internal grid of 3x3 squares each having a side length of 5mm.
The black squares were defined to represent a binary zero and the white squares a binary
one. In order to ensure the rotation of the fiducial can be uniquely determined, the squares at
coordinates (0,0), (2,0) and (2,2) were assigned the binary values of 0, 0 and 1 respectively.
The six remaining binary squares facilitated the representation of 26 = 64 unique identifiers.
Figure 12a shows an example of a fiducial marker located on the robot’s base plane.

9A centroid is considered sufficiently close to the centre of the top cube face if the Euclidean distance
between these points is less than one cube side length.

41

C.H. Conroy Part 3. Main Report

(a) Original (b) Isolated (c) Processed (d) Annotated

Figure 12. Various stages of fiducial detection and identification in the computer vision
subsystem.

The fiducial identification step takes place after the contour extraction phase shown in Figure
11. The purpose of this step is to identify which of the detected contours are an artifacts of
fiducials, to acquire the image coordinates of the fiducials and to extract the fiducial identifiers.
An overview of the fiducial identification algorithm developed for this project is shown in
Figure 13. This algorithm follows the approach of initially assuming that each contour is a
fiducial and discarding contours in latter steps if the contour does not fulfill certain fiducial
requirements. Following this logic, the four corners of the fiducial candidate contour are
extracted using the algorithm presented in later Section 3.5.5 based on the assumption that
the contour is a square. Using the detected corners, the internal angles and side lengths of this
quadrilateral are computed. If they do not approximate the properties of a square, the contour
is discarded.

Apply square
corner

detection

Perform
square

discrimination

Discard
contour

Rotate isolated
image 90
degrees

clockwise

Start

Stop

Input: Binary image contour
Output: Fiducial identifier with corresponding image coordinates

Is contour

square?

Yes

No

Compute
homography

matrix

Fiducial

candidate orientated

correctly?

Warp to
128x128
isolated
image

Classify
grid cells

Rotations
performed

> 3?

Test
orientation
reference
grid cells

Calculate
fiducial

identifier using
data grid cells

Undefined

classifications

> 0?

Yes

No

Yes

No

Yes

No

Figure 13. Flow diagram showing the steps in the fiducial identification process.

It was noted that the fiducial in the image captured by the camera has a degree of perspective
warping compared to the reference digital fiducial image. In order to correct for this perspective

42

C.H. Conroy Part 3. Main Report

warp, a 3x3 homography matrix HHH is computed using the findHomography OpenCV library
function. Four point correspondences are required to compute HHH. These correspondences are
obtained by arbitrarily pairing each of the fiducial candidate’s detected corner coordinates
in the original image to the corner coordinates of a 128 x 128 pixel destination image. The
fiducial candidate region in the original image is warped to the destination image such that
the fiducial pattern is isolated as shown in Figure 12b. The internal region of the isolated
fiducial candidate image is divided into a pre-placed 3x3 grid of squares corresponding to the
expected positions of the fiducial squares. This grid is shown in Figure 12c. For the grid cell
to be classified as a binary one or zero, at least 75% of the inner 30 x 30 pixels of the square
need to have a pixel intensity of 255 or 0 respectively. If the condition is not met for either
value for any grid cell, the grid cell is considered unclassified and the contour is discarded.

Once all the grid cells have been classified, the orientation reference cells at (0,0), (2,0) and
(2,2) are compared with the expected binary values of 0, 0 and 1 respectively. If these match,
the fiducial is considered to be correctly oriented. Otherwise, the isolated fiducial candidate is
rotated 90○ clockwise until the correct orientation is found. If the correct orientation is not
found after three rotations have been performed, the contour is discarded. Finally the unique
binary identifier encoded in the fiducial is extracted by reading the binary values of the cells
from left to right and top to bottom excluding the orientation cells. The cells are ordered
from the least significant bit (LSB) to the most significant bit (MSB). Figure 12c shows the
result of applying the fiducial identification step to the isolated fiducial in Figure 12b. The
orientation reference cells are indicated by green crosses while the fiducial has been rotated to
align with these cells. The binary values detected in each cell are indicated in red. In this case
the identifier is calculated as 1001012 = 37. The fiducial in the original image is annotated
with the detected corners as well as the fiducial identifier as shown in Figure 12d.

3.5.5 Square Corner Detection

Both the fiducial identification (see Section 3.5.4) and cube orientation computation (see
Section 3.5.6) algorithms require the corners of the contours to be known in the image
coordinate system. It was decided to extract these corners from a given contour based on
the assumption that the underlying shape is a square. The first step in the corner detection
process is the computation of the centroid of the contour. Following this, the Euclidean
distances between the centroid and each of the contour points are computed. The contour
point that has the greatest Euclidean distance from the centroid is taken to be the first corner.
The remaining contour points are then segmented into four quadrants with the origin of the
quadrant axes coincident with the centroid of the contour and the axes oriented such that the
detected corner falls at the centre of the first quadrant. This is based on the fact that the four
corners of a square can be separated into four quadrants. The contour points with the greatest
Euclidean distance from the centroid in each of the remaining three quadrants are taken to be
the remaining three corners.

43

C.H. Conroy Part 3. Main Report

3.5.6 Cube Pose Estimation

From a black box perspective, the cube pose estimation step in this project takes the contour
of the top face of a cube as input and produces an estimate of the orientation and location of
the cube with respect to the world coordinate system as output. The location of the centre
of the top face of the cube in the world coordinate system is obtained through the projection
of the centroid of the cube contour from the image coordinate system using Equations 30
and 31. The Z plane of projection in the world coordinate system needs to be specified as
part of this step. Since only independent cubes need to be localised as discussed in Section
3.5.3, it is assumed the cube to be localised always be on the base plane. This is reasonable as
independent cubes only exist as the result of an unexpected event such as the dropped cube
event in which case the independent cube will always be on the base plane. Therefore, for
projection purposes, the Z plane of projection is defined as the Z position of the top-face of
a cube on the base plane. In other words, the Z plane of projection is one cube side length
above the base plane.

Under normal circumstances, every cube in the robot’s workspace will always have a face
parallel to the base plane. Therefore, the detection of the orientation of a cube with respect to
the world frame is reduced to the detection of rotation of the cube about the z-axis. Specifically,
this rotation is defined as the angle between the positive x-axis in the world frame and the
perpendicular line from any cube edge to the centre of the top face of the cube. Furthermore,
since the top face of the cube is a square which has rotational symmetry of order 4 and a 90○
angle of rotational symmetry, the rotational angle range of the cube is mapped to the range
(45○,45○]. The centroid and the four square corners of the cube contour are used to estimate
the orientation of the cube. Since the square corners are already computed for each salient
contour in the fiducial identification step (see Section 3.5.4), this result is simply reused for
the relevant contours in this step.

Since the corners are defined with respect to the image frame, they are also projected to the
same Z plane as the contour centroid projected initially. The coordinates of the centroid
and four corners in the world Z plane are used to compute the rotation of the cube. There
are four lines, each between a corner and the centroid, that can be used to form an angle
with the positive x-axis. By computing the angle using each of these lines separately, the
average estimated angle can then be computed with reduced high-frequency noise. However,
an average angle cannot be computed through the sum and normalisation of the angle data as
this is incorrect mathematically. Instead, one of the lines is chosen as a reference while the
three corners are rotated by either -90○, 90○ or 180○ to be in the same quadrant as the reference
line. The average line position is computed by taking the average X and Y position of the
rotated corners and this can be used to calculate the average estimated angle with respect to
the positive x-axis. Finally, since the cube orientation is defined using a perpendicular line to
the nearest edge, 22.5○ is added to the estimated angle to account for the fact a corner line
was used to compute the average angle. Finally, this angle is mapped to the range (45○,45○].

44

C.H. Conroy Part 3. Main Report

3.6 System Controller
The System Controller serves as the point of intersection between the Vision System, Shape
Definition component and the Robotic System. Furthermore, the functional purpose of the
System Controller is to integrate these components to allow the system to function as a whole.
Since these components make up the majority of the PC-based software component, it was
natural to structure the system controller as the base of this component. To this end, the design
of the integrated system software is first presented in Section 3.6.1. Finally the design of
the final two software components, namely the construction planner and the robotic motion
planner, are discussed in Sections 3.6.2 and 3.6.3 respectively.

3.6.1 Integrated Software

The first step in the design of the integrated system software was to identify the requirements
of the software. Given the Vision System and Shape Definition components developed in
Sections 3.5 and 3.4 respectively, the following core requirements were derived:

• The software needs integrate the Vision System and Shape Definition software compon-
ents into a single unified piece of software.

• The software needs to use the shape model information generated by the Shape Defin-
ition component to generate a set of instructions for the Robotic System to build the
shape.

• The software needs to facilitate communication with the Robotic System such that the
robot can be controlled through the integrated software.

• The software needs to use the information generated by the Vision System to determine
an intelligent response to unexpected events and direct the Robotic System accordingly.

• The software needs to provide an integrated user interface that allows the user to make
use of the Shape Definition component as well as initiate and monitor the 3D shape
construction process.

Based on these requirements, a number of modular components were identified and developed
into the component-oriented solution shown in Figure 14. Each of the components were
implemented as a class using C++ and the QT framework to form the base of the integrated
software implementation. The System Controller class sits at the top level of this implement-
ation and directly contains the user interface classes10 as well as the Logger class through
which all system event information, warnings and errors are recorded. The user interface
classes partition the software based on functionality requirements. Specifically, the Home
View serves as the entrance point to the software and its purpose is to ensure the Robotic
System and camera hardware are present and connected. The Design View integrates the
components related to the Shape Definition function. This includes the OpenGL View which
uses OpenGL to create a 3D render of a model of cubes. This class is supported by the Shader
Program class which manages the shaders used for the rendering task. The model itself is
sourced from the Cube World Model class. The purpose of this class is to simply capture the

10Each of the user interface classes correspond to a distinct screen in the user interface.

45

C.H. Conroy Part 3. Main Report

arrangement of cubes, which are each represented by an instance of the Cube class, and relate
this arrangement to the world coordinate system. The Design View interface facilitates the
creation and manipulation of a Cube World Model instance which serves as output from the
Shape Definition component.

The Cube World Model instance created in the Design View acts as input to the construction
process around which the Construction View class is based. In order for construction to take
place, the system needs to interact with the robot. The Robot class was created for this purpose.
The class provides an abstract interface for the Construction View instance to send position
and actuation control commands to the Robotic System. The units of communication which
the Robot class uses to interact with embedded robotic controller are abstracted in the form
of the Packet class. This class is based on the packet designed in Section 3.3.4. Similarly,
the Vision class exists to offer an abstract interface to the Vision System developed in Section
3.5. The Construction View instance receives information from this component that is used to
guide the control of the Robot instance during the construction process accordingly.

Vision

LoggerHome View

RobotShader

Program Cube

Cube World

Model

Packet

Construction

View

OpenGL

View

Design View

System

Controller

Cube Task

Top-Level Class

User Interface Class

Cube-Related Class

Other Class
Key

Figure 14. Component diagram showing the structure of the integrated PC-based
software solution.

3.6.2 Construction Planner

The modular component-based integrated software design developed in Section 3.6.1 greatly
simplified the design of the construction planner functional unit to the extent where it was not
necessary to create a separate class for this component. Rather, the construction planner was
simply developed as an algorithm that was implemented as a function within the Construction
View class. From an algorithmic perspective, the construction planner takes as input the Cube

46

C.H. Conroy Part 3. Main Report

World Model instance to be constructed and converts this to a list of cube translation and
rotation tasks that need to occur in a given order. Specifically the physical cubes begin in a
number of known source cube positions in the robot’s workspace. The construction planner
generates a number of tasks, which are represented by the Cube Task class, which each relate
a source cube to a destination structure cube position. The construction planner determines
the order in which these tasks are completed. The structure is build one layer at a time by
scheduling the Cube Task instances with structure cubes in the lowest layer first followed by
the tasks for the next layer and so forth. Should an unexpected event occur and a cube be
dropped and lost, the Cube Task instance can simply be restarted with a different source cube.

3.6.3 Robotic Motion Planner

The construction planner defines the start and end position for a cube associated with a
particular Cube Task instance. In order for the robot to execute this task, a sequence of
individual robotic positioning and actuation actions need to be performed in sequence. The
sequence of steps performed by the robot to complete a cube tasks were defined as follows:

1. Move end-effector to just above the source cube.
2. Lower the end-effector onto the cube.
3. Actuate the end-effector vacuum mechanism.
4. Lift the cube up to one layer above the destination layer height.
5. Translate the cube to above the destination position.
6. Lower the cube to the destination layer.
7. Release the end-effector vacuum mechanism.
8. Lift the end-effector to just above the cube..
9. Move the end-effector to the image capture position such that the Vision System can

process the scene.

To execute these steps within the Cube Task instance, an internal state is maintained. When
the task is initiated or a previous task step is completed, the state is updated and the next step is
performed. Each step is performed by calling the appropriate function in the Robot instance’s
interface. The Robot instance generates a signal when the step is complete to trigger the next
state update. When all the steps within a Cube Task instance are complete, the next scheduled
instance is initiated. This repeats until all Cube Task instances have been completed at which
point the 3D shape should be complete in the physical world.

47

C.H. Conroy Part 3. Main Report

4. Results

4.1 Summary of results achieved

Intended outcome Actual outcome Location in
report

Core mission requirements and specifications
The system should construct novel
and moderately complex 3D shapes
using small cubes. The system
should handle shapes up to at least
4 cubes in height containing up to at
least 30 cubes where each cube has
a face parallel to the base plane.
The system should handle equal
size cubes with a side length
between 10mm and 15mm.

The system was able to construct a
wide variety of shapes up to 6 cubes
in height and containing 30 cubes
where each cube has a face parallel
to the base plane and a side length
of 12.6mm ±0.05mm.

Section 4.2.1

The GUI should allow the user to
define a wide range of 3D shapes to
be constructed. For each constituent
cube in the shape, the GUI should
allow the position of each cube to
be specified along each Cartesian
axis with at least 1 mm resolution
as well as the rotation of each cube
about the z-axis with at least 1○
resolution.

The GUI allowed the user to define
3D shapes such that the position of
each constituent cube could be
specified along the x and y
Cartesian axes with 0.2 mm
resolution. The rotation of each
cube about the z-axis could be
specified with 0.9○ resolution.

Section 4.2.2

The end-effector should be able to
grip a cube, maintain its grip during
motion and release the cube. The
end-effector should maintain the
cube in its grip when the robotic
manipulator is at maximum
acceleration. The end-effector
should be able to maintain the cube
in its grip for at least 20 seconds
continuously.

The end-effector was able to grip a
cube, maintain its grip during
motion and release the cube. The
end-effector maintained the cube in
its grip when the robotic
manipulator was at maximum
acceleration. The end-effector was
able to maintain the cube in its grip
for at least 30 seconds continuously.

Section 4.2.3

Table 5. Summary of results achieved.

48

C.H. Conroy Part 3. Main Report

Intended outcome Actual outcome Location in
report

Core mission requirements and specifications
The robotic manipulator should
accurately translate the end-effector
in 3D space and rotate it about its
vertical axis. The robotic
manipulator should have a
repeatability of at least 2mm for
each Cartesian axis and a
repeatability of at least 5 degrees
for the rotation about the z-axis.

The robotic manipulator was found
to have a repeatability of less than
0.4532 mm along the x-axis, 0.3610
mm along the y-axis, 0.7666 mm
along the z-axis and 0.8132○ about
the z-axis.

Section 4.2.4
Section 4.2.5

The computer vision component
should detect and localise the
construction cubes in the workspace
to facilitate re-gripping dropped
cubes and identifying damage to the
3D shape under construction to
signal a construction halt condition.
Only the cubes whose faces are
visible from a vertical perspective
need to be detected and localised.
Cubes that need to be gripped
should be localised with a
positional accuracy of 2mm and a
rotational accuracy of 5 degrees
about the z-axis.

The positional localisation accuracy
of the Vision System was at worst
1.4 mm along the x-axis and 1.2
mm along the y-axis. The positional
localisation accuracy was 0.4914
mm on average along the x-axis and
0.4971 mm along the y-axis. The
rotational accuracy was at worst
3.5○ about the z-axis and on average
0.9114○.

Section 4.2.6
Section 4.2.7

The system should detect when a
cube is unintentionally dropped by
the end-effector. The system should
detect a cube has been dropped
before the end-effector grips the
next cube to be placed.

The system was able detect when a
cube was unintentionally dropped
by the end-effector. The system was
able to detect a cube was dropped
before the end-effector gripped the
next cube to be placed.

Section 4.2.7

Table 6. Summary of results achieved continued (1).

49

C.H. Conroy Part 3. Main Report

Intended outcome Actual outcome Location in
report

Field condition requirements and specifications
The system should work under
laboratory conditions. The ambient
lighting level should be
approximately 500 lux.

The computer vision test was
performed in laboratory lighting
conditions of approximately 500 lux
and worked correctly.

Section 4.2.6

The image background should be
controlled. The immediate
background of the construction
cubes in the captured images should
be non-reflective and of a single
hue.

The immediate image background
of the construction cubes was matte
black rubber which is non-reflective
and is of a single hue.

Section 4.2.6

Table 7. Summary of results achieved continued (2).

4.2 Qualification Tests
This section presents the set of qualification tests that were performed to demonstrate con-
formance of the overall system, and various subsystems, to the system specifications. Prior to
the commencement of a number of the qualification tests, the following setup steps, hereafter
referred to as the General System Initialisation procedure, must have been completed:

1. Ensure robotic manipulator’s workspace is completely empty.
2. Power on the PC that will run the system control software.
3. Ensure the system camera has a clear view of the system workspace and connect the

camera to the PC.
4. Connect the Robotic subsystem to the PC by connecting the micro USB port on the

embedded robot controller to a USB Type A port on the PC using a USB Type A to
micro USB connector cable.

5. Power on the robotic subsystem by connecting the power supply to a main’s electricity
outlet.

6. Start the system control software on the PC.
7. On the home screen in the system control software, verify the correct camera feed is

displayed in the camera view.
8. On the same screen, select the USB-Serial CH340 port from the available ports list.
9. On the same screen, click the Connect to Robot button and verify the robot is connected.

10. Select the Construction view in the system control software.
11. Initialise calibration of the robot by clicking the Calibrate button and verify the calibra-

tion sequence completes successfully.

Qualification Test 1: Test of the system’s capability to build 3D shapes

Objectives of the test or experiment

50

C.H. Conroy Part 3. Main Report

The aim of this test is to determine if the system is capable of constructing a variety of novel
and moderately complex 3D shapes using small cubes each with a side length of between
10mm and 15mm. Novel and moderately complex 3D shapes constitute shapes containing up
to at least 30 cubes where each cube has a face parallel to the base plane.

Equipment used

The following equipment was used to execute this qualification test:

• PC,
• PC System software,
• Robotic Subsystem,
• USB Type A to micro USB connector cable,
• Logitech C920 HD Pro Webcam,
• Test set of ten 3D shape models 11 (.cubeworld files),
• and 30 aluminium cubes with side lengths of 12.6mm ±0.05mm.

Test setup and experimental parameters

The following steps were completed in preparation for this qualification test:

1. Ensure the General System Initialisation procedure has been completed.
2. Navigate to the Construction view in the system control GUI.
3. Click on the Load Model button and verify the .cubeworld test shape files are available

for construction.

Steps followed in the test or experiment

The following steps were carried out to execute this qualification test:

1. Clear the Robotic Subsystem’s workspace and place the 30 cubes at the pre-defined
source cube locations.

2. Select and load a pre-defined test shape model in the Construction view of the system
control GUI using the Load Model button.

3. Verify the correct model is loaded in the 3D shape display.
4. Start the construction process by clicking the Start Construction button in the system

control GUI and wait for the robotic subsystem to construct the shape.
5. Compare the constructed shape to the selected test shape in the 3D shape display in the

GUI and qualitatively classify the shape construction as either a success or failure.
6. Repeat all the steps 1 to 5 of the experimental protocol with a different pre-defined test

shape selected in step 2.
7. Repeat step 6 until all the pre-defined 3D test shapes have been built.

Results or measurements

The full results from this qualification test can be found in Table 13 in the technical document-
ation appendix. The models and resulting shape constructions for the shapes with IDs 2 and 3
are shown in Figure 15. The following is a summary of these results:

• Total shapes constructed = 50,

11The 3D shape models adhered to the properties outlined in Table 12 in the technical documentation appendix.

51

C.H. Conroy Part 3. Main Report

• Total construction successes = 50,
• Total construction failures = 0,
• Construction success rate = 100 %.

Observations

All construction processes resulted in successfully constructed shapes. No cubes were dropped
and no construction failure conditions occurred during any of the construction iterations.

(a) Shape ID 2 (b) Shape ID 2 (c) Shape ID 3 (d) Shape ID 3

Figure 15. 3D shape models and corresponding shapes constructed by the system for
qualification test 1.

Qualification Test 2: Test of system’s capability to facilitate the definition of 3D shapes

Objectives of the test or experiment

The aim of this test is to determine if the system is capable of capturing and representing a
user-specified 3D shape where the position of each constituent cube is specified along each
Cartesian axis as well as the orientation about the z-axis.

Equipment used

The following steps were carried out to execute this qualification test:

• PC,
• and PC System software.

Test setup and experimental parameters

The following steps were completed in preparation for this qualification test:

1. Start the system control software on the PC.
2. Navigate to the Shape Design view in the system control GUI.

Steps followed in the test or experiment

The following steps were carried out to execute this qualification test:

1. Click on the Insert Cube button in the Shape Design view in the system control GUI.
2. Verify a cube is displayed in the 3D shape display.
3. Record the displayed x-axis position value for the cube.

52

C.H. Conroy Part 3. Main Report

4. Translate the cube one step in the positive x-axis direction.
5. Record the displayed x-axis position value for the cube.
6. Translate the cube one step in the negative x-axis direction
7. Record the displayed x-axis position value for the cube.
8. Repeat steps 2 to 6 for translation along the y-axis.
9. Repeat steps 2 to 6 for rotation about the z-axis.

10. Click on the Insert Cube button
11. Verify an additional cube is added to the 3D shape display.
12. Verify the cube can be translated along the x-, y-, and z-axis and rotated about the

z-axis.
13. Repeat steps 10 to 12 until 30 cubes are displayed in the 3D shape display.

Results or measurements

The cube linear step size on both the x- and y-axis in both the positive and negative directions
was 0.1 mm. The cube rotational step size about the z-axis in both the positive and negative
directions was 0.9○. 30 cubes were successfully displayed in the shape display. Each of the
30 cubes could be translated along each axis and rotated about the z-axis.

Qualification Test 3: Test of end-effector’s capability to manipulate cubes

Objectives of the test or experiment

The aim of this test is to determine if the end-effector is capable of maintaining a cube in its
grip under motion when the robotic manipulator is at maximum acceleration. The test also
aims to determine if the end-effector is able to maintain the cube in its grip for at least 20
seconds continuously and if it is able to grip and ungrip the cube.

Equipment used

The following equipment was used to execute this qualification test:

• PC,
• PC System software,
• Robotic Subsystem,
• USB Type A to micro USB connector cable,
• Digital stopwatch,
• and an aluminium cube with a side length of 12.6mm ±0.05mm.

Test setup and experimental parameters

The following steps were completed in preparation for this qualification test:

1. Ensure the General System Initialisation procedure has been completed.
2. Navigate to the Construction view in the system control GUI.

Steps followed in the test or experiment

The following steps were carried out to execute this qualification test:

1. Place the cube in first position of the pre-defined source cube locations.
2. Click on the Execute QTP 3 button to initiate the robot’s routine for this qualification

test.

53

C.H. Conroy Part 3. Main Report

3. Verify the robotic subsystem proceeds to grip the cube placed during the test setup.
4. Start the stopwatch as the cube is lifted off the base plane by the robotic manipulator.
5. Verify, the robot continuously between the extreme locations on each axis.
6. Stop the stopwatch and record the elapsed time if the cube is dropped by the robot at

any point during the robot’s movement sequence up to 30 seconds.
7. After 30 seconds halt the robot’s movement sequence and record if the cube is still

gripped by the robot.
8. If the cube is still gripped by the robot, press the Release Actuator button and record if

the cube is released.
9. Repeat steps 1 to 7 until a total of 10 iterations have been completed.

Results or measurements

The full results from this qualification test can be found in Table 14 in the technical document-
ation appendix. The following is a summary of these results:

• Iterations performed = 10,
• Number of iterations where cube was successfully gripped = 10,
• Number of iterations where the cube was dropped before 30 seconds = 0,
• Number of iterations where the move sequence was completed with the cube still

gripped = 10,
• Number of iterations where the cube was successfully released on command = 10.

Observations

No unexpected events occurred during any of the movement iterations which were all com-
pleted successfully.

Qualification Test 4: Measurement of robotic manipulator linear accuracy

Objectives of the test or experiment

The aim of this test is to determine the linear repeatability of the robotic manipulator’s
positioning along each Cartesian axis.

Equipment used

The following equipment was used to execute this qualification test:

• PC,
• PC System software,
• ImageJ image processing and analysis software,
• Robotic Subsystem,
• USB Type A to micro USB connector cable,
• Vertical flat-faced stand (see Figure 16c),
• 2 sheets of plain white A4 paper,
• Digital caliper,
• 0.5mm Mechanical pencil,
• Electrical tape,
• and a Digital camera.

Test setup and experimental parameters

54

C.H. Conroy Part 3. Main Report

1. Ensure the General System Initialisation procedure has been completed.
2. Navigate to the Construction view in the system control GUI.
3. Attach the mechanical pencil vertically and securely to the robot’s End-Effector As-

sembly using electrical tape as shown in Figure 16a.
4. Place the two sheets of plain white A4 paper on the base plane of the robot’s workspace

such that entire plane accessible by mechanical pencil tip is covered.
5. Secure the paper sheets in place to the base plane using electrical tape.

(a) Vertical pencil (b) Horizontal pencil attachment (c) Stand setup

Figure 16. Experimental setup configuration used during qualification test 4.

Steps followed in the test or experiment

The following steps were carried out to execute this qualification test:

1. Using the position controls in the system GUI’s Construction view, iteratively reduce
the z-position of the robot until the tip of the mechanical pencil touches the sheet
of paper on the base plane firmly enough to leave a mark on the paper. Record this
z-position in steps as zmark.

2. Let the x and y coordinates of the position where the robot’s repeatability is being tested
be denoted by xtest and ytest respectively. Let the x- and y- coordinates of the reference
position to where the robot moves after making a mark be denoted by xre f and yre f .
Select these values as xtest = 0, ytest = 0, xre f = 1015 and yre f = 1125 steps.

3. Move the robotic end-effector to position (xtest , ytest , zmark + 50) where the elements of
this tuple refer to the x-, y- and z-position of the robot respectively.

4. Decrease the z-position of the robotic end-effector to zmark to place a mark on the paper
on the base plane.

5. Increase the z-position of the robotic end-effector to zmark + 50 to remove the pencil tip
from the paper.

6. Move the robotic end-effector to the reference position (xre f , yre f , 2200) where the state
tuple contains the target x-, y- and z-position of the robotic end-effector respectively.

7. Repeat steps 3 to 6 until a total of 10 iterations have been completed for the given test
position.

8. Repeat steps 2 to 7 with xtest = 1015, ytest = 1125, xre f = 0 and yre f = 0 steps.
9. Repeat steps 2 to 7 with xtest = 1015, ytest = 0, xre f = 0 and yre f = 1125 steps.

55

C.H. Conroy Part 3. Main Report

10. Repeat steps 2 to 7 with xtest = 0, ytest = 0, xre f = 1015 and yre f = 0 steps.
11. Repeat steps 2 to 7 with xtest = 507, ytest = 562, xre f = 0 and yre f = 0 steps to test the

repeatability in the middle of the robot’s workspace.
12. Remove the and reattach the mechanical pencil horizontally and securely to the robot’s

End-Effector Assembly using electrical tape as shown in Figure 16b.
13. Attach a piece of plain white paper to the vertical surface of the flat-faced stand as shown

in Figure 16c and place the stand in the back right corner of the robot’s workspace with
the vertical face aligned with the zy plane.

14. The z-repeatability for two z-planes are tested simultaneously by moving between the
two planes and marking a point on the paper for each plane. Let the lower plane be
denoted by zlower and the upper plane be denoted by zupper. Select these values as
zlower = 500 and zupper = 2300 steps.

15. Position the robotic end-effector such that the tip of the mechanical pencil touches the
sheet of paper on the vertical stand surface firmly enough to leave a mark on the paper.
Record the x- and y-position in steps as xmark and ymark respectively.

16. Move the robotic end effector to (xmark - offset, ymark, zlower) where offset=50 steps
when the vertical stand is facing left and offset=-50 steps when facing right.

17. Set the x-position of the robotic end-effector to xmark to mark the point on the paper.
18. Set the x-position of the robotic end-effector to xmark - offset to remove the pencil tip

from the paper.
19. Set the z-position of the robotic end-effector to zupper.
20. Set the x-position of the robotic end-effector to xmark to mark the point on the paper.
21. Set the x-position of the robotic end-effector to xmark - offset to remove the pencil tip

from the paper.
22. Repeat steps 16 to 21 until 10 iterations have been performed.
23. Repeat steps 15 to 22 with the vertical stand in the back left, front right, front left and

centre of the robot’s workspace.
24. For each cluster of point markings on each sheet of paper, set the digital caliper to 2.00

mm and press the tips of the caliper into the sheet of paper near the point such that the
paper is indented with the 2.00 mm reference mark.

25. Take a photo of each cluster of point markings using the digital camera.
26. Use the ImageJ image processing software to isolate the cluster of point markings.
27. Using ImageJ, calibrate for length using the 2.00mm reference indents and measure the

spread of the markings in the x, y and z directions depending on the sample. Record
these measurements.

Results or measurements

The full results from this qualification test can be found in Tables 15, 16 and 17 in the technical
documentation appendix. Tables 8 and 9 show a reduced set of these results:

56

C.H. Conroy Part 3. Main Report

Sample
Set

X Position
(steps)

Y Position
(steps)

Z Position
(steps)

X Points
Range (mm)

Y Points
Range (mm)

1 0 0 0 0,2463 0,2028

2 0 1125 0 0,4532 0,3610

3 507 562 0 0,4530 0,3473

4 1015 0 0 0,4211 0,3256

5 1015 1125 0 0,3064 0,2323

Table 8. Range of points along the x- and y-axis measured from the point cluster images
for qualification test 4.

Sample
Set

X Position
(steps)

Y Position
(steps)

Z Position
(steps)

Reference
Length
(pixels)

Z Points
Range
(pixels)

Z Points
Range
(mm)

1 852 70 500 60,001 23 0,7666

2 852 70 2300 61,26 19,96 0,6516

3 502 400 500 60,962 18,506 0,6071

4 502 400 2300 60,705 15,173 0,4998

5 194 700 500 60,397 17,557 0,5813

6 194 700 2300 60,27 19 0,6304

Table 9. Range of points along the z-axis measured from the point cluster images for
qualification test 4.

Observations

The main observation that was made during the executing of this qualification test was that
the size of the pencil lead used to mark the points was similar to the range of the points
distribution along all axes. No deviation among the 10 points per sample was observable with
the naked eye.

Statistical analysis

The mean and maximum range of the points along each axis were computed across the sample
sets and are shown in Table 10.

57

C.H. Conroy Part 3. Main Report

Statistic X Axis Y Axis Z Axis
Mean (mm) 0.3760 0.2938 0.6229

Maximum (mm) 0.4532 0.3610 0.7666

Table 10. Mean and maximum range for each axis across all the sample sets.

Qualification Test 5: Measurement of robotic manipulator’s rotational accuracy

Objectives of the test or experiment

The aim of this test is to determine the rotational repeatability of the robotic manipulator
rotational positioning about the z-axis.

Equipment used

The following equipment was used to execute this qualification test:

• PC,
• PC System software
• Robotic Subsystem,
• USB Type A to micro USB connector cable,
• an aluminium cube with a side length of 12.6mm ±0.05mm,
• 25 x 20 grid of 10mm squares printed on a sheet of white A4 paper,
• Digital caliper,
• Electrical tape,
• and a 30 cm ruler.

Test setup and experimental parameters

The following steps were completed in preparation for this qualification test:

1. Ensure the General System Initialisation procedure has been completed.
2. Navigate to the Construction view in the system control GUI.
3. Place the grid paper approximately in the centre of the robot’s workspace. The grid

does not need to be aligned with the robot’s coordinate system.
4. Secure the grid paper in place to the base plane using electrical tape as shown in Figure

17.

Steps followed in the test or experiment

The following steps were carried out to execute this qualification test:

1. Choose any one of the 250 mm long grid lines and align the ruler with the line. Press
down on the ruler so that the ruler does not shift from this position.

2. Place the cube on the base plane and use the ruler to align the cube with the 250mm
long grid line.

3. Remove the ruler without disturbing the position or the orientation of the cube.
4. Use the robot position controls in the Construction view of the system control GUI to

align the end-effector suction cup with the top of the cube.

58

C.H. Conroy Part 3. Main Report

Figure 17. Placement of grid in the robot’s workspace to facilitate the measurement of
the z-axis rotational repeatability.

5. Set the rotational step position of the end-effector to 0 steps.
6. Use the robot position and actuation controls in the Construction view of the system

control GUI to pick up the cube slightly above the base plane.
7. Set the robotic end-effector’s rotational step position to either 78 steps (odd iterations)

or -78 steps (even iterations).
8. Set the robotic end-effector’s rotational step position back to 0 steps.
9. Use the robot controls to move the cube vertically downwards, place the cube on the

base plane and release the cube.
10. Move the robotic end-effector vertically upwards and to a position that does not restrict

access to the robot’s workspace.
11. Press down on the top face of the cube to preserve its orientation and position.
12. Use the face nearest to the 250 mm grid line to align the ruler against the cube. Press

down on the ruler to preserve the ruler’s orientation and position.
13. Remove the cube from the robot’s workspace.
14. Let the first and last 200 mm long grid lines be denoted by y0 and y1 respectively. Use

the placed ruler to draw a line that extends the full length of the grid and intersects with
y0 and y1.

15. Repeat steps to 1 to 14 until a total of 18 iterations have been completed using a different
250 mm grid line in each instance.

16. Using the digital caliper, measure the deviation of the intersection of each drawn line
with y0 from the intersection of the corresponding 250 mm grid line with y0. Repeat
this with y1.

17. Calculate φ , the angle of each drawn line with respect to the corresponding 250 mm
grid line as

φ = arctan
δ0−δ1

∆x
, (32)

where δ0 and δ1 are the intersection deviations on y0 and y1 respectively while ∆x is the

59

C.H. Conroy Part 3. Main Report

length of the 250 mm grid line
18. Record these results.

Results or measurements

The full results from this qualification test can be found in Table 18 in the technical document-
ation appendix. The following is a summary of these results:

Observations

Notable position offsets of the axis of rotation were observed during the rotation of the cube
as a result from the end-effector gear surface being uneven.

Statistical analysis

The mean angular deviation magnitude, maximum deviation and deviation bias was computed
for all 18 angular deviation samples. These results are as follows:

• Mean angular deviation = 0.3153○,
• Maximum angular deviation = 0.8132○,
• Angular deviation bias = 0.08404○.

Qualification Test 6: Measurement of computer vision cube detection accuracy

Objectives of the test or experiment

The aim of this test is to determine the accuracy of the computer vision system in detecting
and localising cubes whose faces are visible from a vertical perspective. Specifically, the test
aims to determine the accuracy of the linear localisation along the x-axis and y-axis as well as
the rotational pose estimation about the z-axis.

Equipment used

The following equipment was used to execute this qualification test:

• PC,
• PC System software
• Robotic Subsystem,
• USB Type A to micro USB connector cable,
• Logitech C920 HD Pro Webcam,
• 19 Aluminium cubes with side lengths of 12.6mm ±0.05mm,
• Mechanical pencil,
• Matte black paper,
• Electrical tape,
• and a 30 cm ruler.

Test setup and experimental parameters

The following steps were completed in preparation for this qualification test:

1. Place the matte black paper on the base plane of the robot’s workspace and secure it in
place using the electrical tape.

2. Navigate to the Construction view in the system control GUI.
3. Move the robotic end-effector to the four extreme points on the base plane of the

60

C.H. Conroy Part 3. Main Report

workspace and mark these point on the black paper using the mechanical pencil.
4. Draw four lines to join these points to form a rectangle on the black paper using the

mechanical pencil and ruler. Using the ruler, mark every 10 mm on each of the four
lines.

Steps followed in the test or experiment

The following steps were carried out to execute this qualification test:

1. Using the 10 mm markings as reference, place the ruler across the robot’s workspace at
an angle of 0○ with the x-axis of the robot’s coordinate system. Do this at a number of
positions. In each instance, press the ruler down firmly to preserve it’s orientation and
position.

2. For each ruler placement, place a number of cubes by using the ruler to ensure the angle
of each cube with with respect to the x-axis is 0○. Continue this process until 16 cubes
have been placed.

3. Using the robot position control in the system control GUI, align the suction cup of the
robotic end-effector with the centre of the top face of each cube. Record the robotic
end-effector’s x and y coordinates when aligned with each cube. These are taken as the
known world coordinate’s of each cube.

4. Click the Process Scene button in the Construction view of the GUI to trigger a capture
and process action from the Vision System.

5. Record the position and orientation of each cube as estimated by the Vision System.
6. Repeat steps 1 to 5 using a ruler angle of 45 ○ and a total of 19 cubes.

Results or measurements

The full results from this qualification test can be found in Tables 19 and 20 in the technical
documentation appendix.

Observations

A degree of misalignment was observed between the position of the cube as estimated by the
computer vision component and the actual position of the cube based on the position of the
end-effector. Furthermore, a degree of high-frequency noise was observed in the computer
vision’s estimate of the corner positions of cubes.

Statistical analysis

The mean error magnitude, error bias and maximum error for the linear x-axis, linear y-axis
and rotational z-axis were computed across all the cube samples and are shown in Table
11. Furthermore, the linear error for the x- and y- axis as is shown in Figures 18 and 19
using colour on a per cube point basis with the points plotted as a scatter plot of the robot’s
workspace.

61

C.H. Conroy Part 3. Main Report

Statistic X Axis (mm) Y Axis (mm) Z Axis Rotation (○)
Mean Error
Magnitude

0.4914 0.4971 0.9114

Error Bias -0.32 0.1314 0.3783

Maximum Error 1.4 1.2 3.5

Table 11. Vision System cube detection mean error magnitude, error bias and
maximum error for the linear x-axis, linear y-axis and rotational z-axis.

Figure 18. Vision System cube position detection error along the x-axis.

Figure 19. Vision System cube position detection error along the y-axis.

62

C.H. Conroy Part 3. Main Report

Qualification Test 7: Test of system’s capability to detect a dropped cube and and shape
construction failure

Objectives of the test or experiment

The aim of this test is to determine if the system is capable of detecting when a cube has been
dropped by the end-effector.

Equipment used

The following equipment was used to execute this qualification test:

• PC,
• PC System software
• Robotic Subsystem,
• USB Type A to micro USB connector cable,
• Logitech C920 HD Pro Webcam,
• and 30 Aluminium cubes with side lengths of 12.6mm ±0.05mm.

Test setup and experimental parameters

The following steps were completed in preparation for this qualification test:

1. Ensure the General System Initialisation procedure has been completed.
2. Navigate to the Construction view in the system control GUI.

Steps followed in the test or experiment

The following steps were carried out to execute this qualification test:

1. Click on the Load Model button and select an arbitrary 30 cube shape model.
2. Clear the Robotic Subsystem’s workspace and place the 30 cubes at the pre-defined

source cube locations.
3. Click on the Start Construction button in the system control software to initiate the

construction process.
4. For each of the first 5 cubes, click the Release Actuator button in the system control

software to force the robot to drop the cube while carrying the cube to the structure.
Note whether the robot detects the dropped cube condition before in the GUI info log
before proceeding with construction.

5. For cubes 6 to 10, manually remove the cube from the grip of the end-effector during
the robot’s final downward movement to place the cube and place the cube in the robot’s
workspace.

6. Note whether the robot detects the dropped cube condition before in the GUI info log
before proceeding with construction.

7. Repeat steps 5 to 6 with cubes 11 to 15, but remove the cube from the end-effector
during the robot’s horizontal motion while moving the cube to the structure.

8. Repeat steps 5 to 6 with cubes 16 to 20, but remove the cube from the end-effector
during the robot’s upward motion after gripping the cube.

9. Repeat steps 5 to 6 with cubes 21 to 25, but remove the cube from the end-effector
while the robot is moving to grip the cube.

10. After the 25th cube has been placed, push the structure under construction until at least

63

C.H. Conroy Part 3. Main Report

1 cube falls from the structure.
11. Note whether the system detects a construction failure condition using the GUI info

log.
12. Repeat steps 1 to 11 with a different test shape structure until 5 iterations have been

completed.

Results or measurements

The full results from this qualification test can be found in Table 21 in the technical document-
ation appendix. The following is a summary of these results:

• Iterations performed = 5,
• Number of iterations where dropped cubes 1-5 were successfully detected = 5,
• Number of iterations where dropped cubes 6-10 were successfully detected = 5,
• Number of iterations where dropped cubes 11-15 were successfully detected = 5,
• Number of iterations where dropped cubes 16-21 were successfully detected = 5,
• Number of iterations where dropped cubes 20-25 were successfully detected = 5,
• Number of iterations where the final construction failure was successfully detected = 5.

Observations

No unexpected events occurred during any of the movement iterations which were all com-
pleted successfully. Furthermore, the robot was successfully able to re-grip each dropped
cube and continue with construction in each instance.

64

C.H. Conroy Part 3. Main Report

5. Discussion

5.1 Interpretation of results
The integrated system developed in this project, which comprises of the PC System and the
Robotic System, has one overarching mission. That goal is the successful construction of 3D
shapes using small construction cubes. The system can be considered to have successfully
attained this goal if it satisfies the first two system specifications. These are the system’s
capability to build 3D shapes and the system’s capability to facilitate the definition of these
shapes. With these two specifications met, the system is capable of capturing an arbitrary 3D
shape concept and producing a physical realisation thereof. The remaining four specifications
are primarily concerned with how well and how robustly the various subsystems support this
task.

5.1.1 Shape Construction

Considering the cube construction specification, it was observed the system had a success
rate of 100% when constructing the predefined set of 3D test shapes. In order to evaluate the
weight of this result, the nature of the 3D test shape set first needs to be discussed. Firstly,
all of the test shapes were chosen to comply with the shape construction specification. This
means that all of the 3D test shape models consisted of at least 30 cubes12 and were at least
4 cubes in height. Furthermore, recall that the fourth system specification requires at least
2mm of linear repeatability. Based on this, the 3D test shape models were assigned a spacing
tolerance of 2 mm between cubes. However, within these constraints, there are an infinite
number of shapes that can be constructed.

To the student’s knowledge, there is no known set of shapes that, if constructed, definitively
proves all shapes within these constraints are constructable by the system. As such, the test
shapes were chosen to exhibit as wide a range of properties across the set as possible that
may arise from arbitrarily defined shapes. These properties included arbitrary cube rotation
about the z-axis, partially supported cubes, structures up to the maximum height of 6 cubes,
single cube tower stacks, slanted single cube tower stacks and finally structures that span the
majority of the robot’s workspace. Lastly, the tolerance between cubes was reduced to 1 mm
between cubes for some structures to test the envelope of the system’s capability. With the
nature of the 3D test shapes considered, the 100% construction success rate indicates with a
strong degree of confidence that the system is capable of successfully constructing arbitrary
3D shapes.

12In fact, each test shape consisted of exactly 30 cubes as, at the time of writing, only 30 cubes were available
for testing purposes.

65

C.H. Conroy Part 3. Main Report

5.1.2 Shape Definition

All of the test shape’s defined using the Shape Definition component of the system which is
indicative that the system is capable of facilitating the definition of arbitrary 3D shapes. It
was shown that the Shape Definition input controls allow the linear x- and y-axis position of
each individual cube to be specified with a resolution of 0.2 mm and the rotational position of
each cube to be specified with a resolution of 0.9 degrees. These values originate from the
resolution of the stepper motors in the Robotic Subsystem. Specifically, the use of a 20 tooth
timing belt pulley on a stepper motor with 1.8 degrees of resolution in full-step mode results
in a linear step size of 0.2mm. Furthermore, the 1.8 degree end-effector rotation stepper motor
has a step size of 0.9 degrees in half-step mode. Therefore, the use of higher resolutions in
the Shape Definition component is not practical as this is not physically realisable. Based
on this, the system meets the shape definition specification which requires 1 mm linear step
resolution and 1 degree rotational resolution.

The Shape Definition component relies predominantly on OpenGL to create a 3D model of
the shape under construction that can be interacted with to create the structure. The use of a
3D model to facilitate shape construction provides a far more intuitive experience for the user
than simply specifying the coordinates of each cube or working with 2D slices of the shape.
Furthermore, the lower-level graphics API nature of OpenGL also offered further control
over the scene being rendered than higher level solutions which allowed the Shape Definition
component to be better tuned to the task at hand. However, these benefits are offset by the
greater time investment that is required when developing software with OpenGL. Due to
the simplistic nature of the rendering task in the Shape Definition component, this was not
considered a major drawback.

5.1.3 Robotic System

The system depends on the end-effector as interface to enable the system to interact with the
cube. Therefore, in order, to construct 3D shapes, the system relies heavily on this component
during the manipulation of the pose of each cube. As such, the success of the system observed
when testing the system’s shape construction ability implied that the end-effector was capable
of manipulating cubes. However, there is no guarantee that the most strenuous conditions
possible for the end-effector were arbitrarily encountered during this process. Therefore, due
to the critical nature of this component, a test was required to verify its capability in isolation.
Based on the acceleration and movement speed of similar existing systems as well as the
approximate dimensions of the workspace, it was estimated that the maximum duration the
end-effector would be required to grip the cube for would never exceed 20 seconds. The third
system specification is based on this estimate.

The test results showed that for 10 iterations, the end-effector achieved a 100 % success rate
in maintaining the cube in its grip for 30 seconds. The test was halted at 30 seconds which
indicates the maximum possible duration is likely longer, yet still clearly demonstrates the
end-effector complies with the specification. Furthermore, the nature of the test means the
end-effector was exposed to the maximum force it was expected to endure during the period of

66

C.H. Conroy Part 3. Main Report

motor acceleration. This is backed by early tests of the vacuum system which yielded holding
times of up to 8 hours. However, there may be trade-off with the lifetime of the vacuum
system servo motor and the suction force. The first servo motor installed in the vacuum system
failed and ceased during operation. It is suspected that the large forces endured by the motor
when inducing a comparatively low pressure in the vacuum system shortened the lifespan
of the motor. However, despite reducing the suction force of the vacuum system with the
new servo motor, the end-effector still performed within the desired specification. A number
of other approaches were considered for the end-effector mechanism from electromagnetic
solutions to finger grippers. However, only the suction cup based vacuum approach met all
the functional requirements of the end-effector and was selected as a result.

The tests concerning the capability of the system to construct arbitrary 3D shapes generally
only offer information at a qualitative level. This is due to the difficulty that exists in
measuring the accuracy of the position and orientation of the cubes internal to the structure
under construction. Therefore, to attain a quantitative measurement of this process, the
assumption was made that the accuracy of the constructed 3D structure can be assessed, at
least in part, from the accuracy of the mechanism responsible for placing the cubes. The
repeatability of the robotic manipulator is the quantitative indicator that was assessed during
the testing process of this component. The linear repeatability of robotic manipulator along
each Cartesian axis and its rotational repeatability about the z-axis is highlighted in Table 6.

In comparison to the specification for the robot’s repeatability, the repeatability along each
linear axis is very good and comfortably within the required 2mm. The rotational repeatability
is excellent in comparison to to the 5○ requirement. The rotational repeatability remains
impressive when compared to the rotational step size. However, the linear step size of 0.2mm
is notably less than the linear repeatability. This would indicate that the stepper motors
are potentially losing steps. However, due to the nature of the repeatability test, the linear
repeatability performance is likely underrated. Specifically, a mechanical pencil with a lead
size of 0.5 mm was used to mark the position of the end-effector during the test. This size
is comparable to the magnitude of the robot’s repeatability measurement which was based
on the spread of pencil marks. This indicates the width of the pencil lead likely inflated the
repeatability readings.

One way to correct for this would be to simply subtract the width of a single mark left by
the pencil from the repeatability measurement. However, there are a number of variables
that determine the size of a mark and therefore an exact measurement of this is difficult to
ascertain. However, for the purposes of the repeatability test in this project, it was considered
sufficient to ignore this step and simply use the measurement as an upper bound that is highly
unlikely to be an underestimation. Therefore, the repeatability was judged to have met the
specification with a very high degree of confidence. The accuracy of the Robotic System is
largely based on the robust design of the mechanical manipulator.

Previous iterations of this project suffered with precision control issues due to vibration.
Therefore, a large emphasis was placed on the mechanical design aspect of this project to
eliminate these issues. A gantry robot approach was selected with these factors in mind as
this design generally exhibits better accuracy than the articulated robot and SCARA approach.
The gantry approach offered a much greater opportunity to ensure stability through its frame.
Finally, the accuracy of gantry robots are constant across their workspace and are better suited

67

C.H. Conroy Part 3. Main Report

to Cartesian based problems as a result. In order to introduce stability to the Robotic System,
20x40 aluminium extrusions were used instead of the linear rail seen in previous projects.
Furthermore, the robot was designed such that the Y-Axis Assembly moves on top of the frame
to allow the frame’s centre of gravity to be lowered. This design approach resulted in a very
stable Robotic System that mostly eliminated vibration issues and facilitated precision control.
Overall, the mechanical component of the Robotic System was highly successful in fulfilling
its functions and provided a solid foundation for the other subsystems within this project.

5.1.4 Computer Vision System

As mentioned in Section 3.5, the Vision System is not required for open-loop shape construction
but is required to make the system closed-loop so that it can handle unexpected events. The
Vision System is centred around the detection of cubes and the classification of cubes into
source cubes, structure cubes and independent cubes. The reliability of this classification as
well as the accuracy with which the robot is able to re-grip a dropped cube depends on the
accuracy with which the Vision System is able to estimate the pose of a cube in the world
coordinate system. The accuracy of cube localisation of the Vision System for the base plane
is is highlighted in Table 6.

These results indicate that the Vision System cube localisation process meets the linear accuracy
specification of 2mm as well as the rotational accuracy specification of 5○. When gripping a
cube, the distance from the edge of the cube to the outer perimeter of the suction cup centred
on the top face of the cube is greater than the cube localisation linear deviation. This implies
that the localisation inaccuracies should not prevent the system from re-gripping a cube.
However, there is still a degree of inaccuracy introduced nonetheless which limits how far the
inter-cube tolerance can be reduced when the system constructs a shape in closed-loop mode.
However, with an inter-cube tolerance of greater or equal to 2 mm should almost always
ensure successful construction in closed-loop mode.

The main source of inaccuracy is introduced by the pin-hole camera based approach used to
map between the world coordinate system and the image coordinate system. This approach
is dependent on the accuracy of the known positions of the fiducials in the world coordinate
system. However, due to the obstructed nature of the robot’s workspace and the form of the
end-effector which defines the robot’s workspace, it is challenging to measure the exact world
coordinates of the each fiducial. Furthermore, the centre point of each fiducial is identified
by the Vision System as the centre of the fiducial’s contour. However, lighting variations and
noise in the square corner detection processes can cause misalignment between the centroid
and actual fiducial centre. These sources of uncertainty contribute to the inaccuracy exhibited
in the cube localisation process.

Since the dropped cubes to be re-gripped are almost exclusively found on the base plane, the
use of a homography to perform the mapping was considered. However, the cube classification
step requires the classification of cubes on all planes which cannot be solved using only a
homography. Overall the cube localisation approach was considered successful, however, the
system would benefit from accuracy improvements in this process.

The system makes use of the vacuum system pressure sensor to detect a dropped cube case

68

C.H. Conroy Part 3. Main Report

and the Vision System to deal with the dropped cube case and detect the construction failure
case. The test of the system’s response to unexpected events showed that the system was able
to respond to all dropped cube cases and detect all construction failures. The dropped cube
test involved forcing a dropped cube response by removing the cube during every possible
phase of the robot’s cube handling movement during construction. This revealed that the
system was also successfully able to deal with the missing cube case where a cube is removed
from its source cube position before the end-effector reaches this position. Supplementing the
Vision System with the pressure sensor made the dropped cube detection mechanism robust
as indicated by the test results. Finally, each construction failure case was also successfully
detected. These results demonstrate compliance of the system with the sixth and final system
specification.

5.2 Critical evaluation of the design

5.2.1 Aspects to be improved in the present design

Due to the number of subsystems within this project and the depth to which each subsystem
was explored, it is expected that there would be many facets which could not be explored
sufficiently or issues which could not be corrected within the given time frame. As a result,
there are many aspects that could be improved in the current design. With respect to the
mechanical component of the Robotic Subsystem, the z-axis motor mount exhibited issues
in securely gripping the Z-Axis Assembly linear rods. The z-axis motor mount relied on
the tightness of the hole around the linear rod in the 3D printed part to create a connection.
However, this connection became looser over time and should be replaced with a clamping
mechanism. Secondly, the robotic manipulator was far more rigid than anticipated. This is a
desirable characteristic, however, the height of the system could be increased significantly
to take advantage of this and facilitate taller structure construction. Lastly, the 3D printed
rotational end-effector rod has slightly too much play which reduces the cube placement
accuracy. This part should be re-printed with tighter tolerances.

The design of the robotic controller had an error that was not uncovered until the PCB was
received and assembled where two of the I/O pins were not powered correctly. These pins
corresponded to the y-axis motor driver microstepping mode selection inputs. This meant the
motor could not be configured in 1/32 microstepping mode but rather only 1/16 microstepping
mode which introduced additional vibrations and noise. This design error should be corrected
and the PCB re-manufactured. In addition, the global semi-conductor shortage resulted in
the selection of a microcontroller with a slightly lower clock speed than desired. A faster
microcontroller would allow a higher stepper motor pulse rate and faster system operation.

The first aspect of the Vision System that needs to be improved is the system’s tolerance to
lighting variability. The system uses a fixed camera exposure level and binary threshold
level which need to be adjusted when operating in notably different lighting conditions. This
should be upgraded to an adaptive threshold mechanism. Secondly, the mapping between
the world and image coordinate system only considers the camera intrinsics and not the
distortion coefficients. Including these in the mapping computation should improve cube

69

C.H. Conroy Part 3. Main Report

localisation accuracy. In addition, the fiducial pattern should be updated to facilitate more
accurate identification of a world reference point as discussed in 5.1.4.

The Shape Definition component also has a number of elements that can be improved. The
primary form of cube manipulation is through a number of keyboard controls to alter the
position and orientation of the cube. However, when a cube needs to be moved to a position
far from its initial insertion point, it can take a while due to the small step resolution of the
system. The implementation of controls to specify the coordinates of the cube directly as
well as the option to change the step resolution of the translation action would improve the
usability of the Shape Definition component.

5.2.2 Strong points of the current design

The primary strong point of the design is the rigidity of the mechanical component of the
Robotic System. This was discussed in depth in Section 5.1.3. The rigidity provides a very
stable foundation for the motion of the Y-Axis Assembly and X-Axis Assembly which ultimately
results in a high degree of accuracy in the positioning of the robotic end-effector. This in turn
allows shapes to be constructed with a small tolerance which facilitates the construction of a
wide range of shapes. Furthermore, this rigidity, combined with the low centre of mass of the
robotic manipulator reduces the vibrations that reach the robot’s workspace and end-effector
significantly.

The embedded robotic controller has also proved to be a very reliable component of the design.
The controller has only required minor firmware tweaks since its completion and allowed
the design focus to be on the PC System software for the latter phases of the project. The
controller is also robust and highly compact as it was manufactured as a PCB. Lastly, the
Vision System approach, despite having the potential for accuracy improvements, has provided
a very solid foundation for mapping between the image frame and the world frame. Once
the mathematical challenges in projecting back from the image frame to the world frame
were resolved, the solid theoretical foundation of the approach allowed the relatively fast and
seamless introduction of fiducials, cube classification based on location and vision detection
region bounding in the world plane into the Vision System.

5.2.3 Under which circumstances is the system expected to fail?

The Shape Definition component has a number of ways in which a failure state could be
induced. Firstly, the component does not include any intersection or collision logic between
cubes in the design. Therefore, a design with intersecting cubes could be produced which
would lead to a failed construction in the physical world. Secondly, the component does not
perform any analysis of the physics of the cubes. Therefore, it is possible to design a shape
where the cube is not correctly supported which would also lead to a construction failure in
the physical world. It is also possible for a system failure to occur during a dropped cube
event. If a cube is dropped near a structure, it is possible for the Z-Axis Assembly to collide
with the structure when moving down to re-grip the cube.

70

C.H. Conroy Part 3. Main Report

5.3 Design ergonomics
During the development of the system, a number of design decisions were made that took the
ergonomics of the design into consideration. Firstly, the robotic manipulator was designed to
be as compact as possible. The design of the custom X-Axis Assembly belt clamps that do not
protrude from the assembly to improve compactness along the x-axis is an example of this.
The culmination of these decisions resulted in a robot that fits on a desktop with all the cables
and tubes routed very cleanly to the back left of the robot. The aesthetics of a system can also
be considered as an ergonomics factor. The robot exhibits a sleek plain black design with
white highlights that gives the the robot a professional feel. Lastly, the robot was designed
with the intention of being viewed from the front perspective. This facilitates a view of the
shape under construction with minimal occlusions.

The System Control software also exhibits a number of ergonomic features. The Shape Defini-
tion component allows the intuitive 3D design and inspection of the shape to be constructed.
Furthermore, the Construction view interface offers a real-time 3D visualisation of the cube
belief states during the construction process. Furthermore, this can be viewed in isolation
or in conjunction with the computer vision feed which can also be viewed in isolation. The
computer vision display also has a number of controls that allow the computer vision stages
and information displayed to be customised.

5.4 Health, safety and environmental impact
The primary safety concern in this project is electrical safety. The greatest danger is posed
through the main’s electricity wires connecting to the power supply. In order to protect against
this, a cover for the power supply connection pins was designed and 3D printed. It is not
possible to touch the electrical connection points without removing the cover. The main
PCB board was designed with mounting holes to facilitate mounting in an electrical cover
box which had not yet been created at the time of writing. A number of wires were spliced
together in the design. Heat shrink tubing was used to cover these connections. Lastly, the
moving mechanical parts of the robot pose an injury threat. Limit switches are included in
the design which prevents the robot from exceeding the limits of its axes. However, it cannot
sense obstructions in its path so care must be taken not to get body parts caught in the robot
during operation.

In terms of environmental impact, the stepper motors of the robot produce acoustic noise
during operation. Microstepping was implemented which reduces the vibrations generated by
the motors which in turn reduces the acoustic noise generated. Furthermore, by ensuring the
motors only rest in full step positions, the ringing noise that is emitted in microstep positions
is eliminated. The PCB was designed in such a manner as to reduce the size of the current
loops formed which minimises electromagnetic noise. In addition, the use of a ground plane
on the PCB also helps to shield electromagnetic noise.

71

C.H. Conroy Part 3. Main Report

5.5 Social and legal impact of the design
The technology developed and utilised in this project relates directly to the field of indus-
trial robotics and automation. If social issues are considered from the perspective that the
technology developed in this project supports the rate of development in these domains, then
there may be an increase in the number of jobs lost to automation as a result. However,
such efficiency improvements will likely lead to the creation of wealth, and therefore jobs, in
other domains. The project can also be viewed as a general robotic platform which could be
purchased and adapted to various applications, such as 3D printing or laser engraving. In this
sense, the project has the potential to generate wealth and improve the economic standing
of one or more individuals. Lastly, in the same vein of thought, the project as a product
could serve as a educational platform as an entry point to using computer vision with robotics
in a highly constrained environment. However, due to the unavoidable potential for injury
resulting from the mechanical component of the robot, the legal issues relating to this need to
be taken into consideration.

72

C.H. Conroy Part 3. Main Report

6. Conclusion

6.1 Summary of the work completed
This report details the work that was performed during the design and development of a
robotic system with the overarching goal of constructing arbitrary 3d shapes using small
construction cubes.

A literature study was undertaken into computer vision approaches to object detection, with a
focus on traditional techniques, as well 3D object localisation methods and their application
to the robotics domain. Firstly, a gantry robot was designed from first principles and manu-
factured using a combination of 3D printing and metal machining technologies. Following
this, the hardware of embedded robot control circuit was designed from first principles and
a prototype was created on a breadboard. The software was implemented on the embedded
controller using C. A PCB was designed for the circuit and sent for manufacturing overseas.

A 3D render based GUI was developed using a low-level graphics API to facilitate the
definition of 3D shapes. A computer vision system was developed to detect and localise the
cubes within the robot’s workspace. Finally, PC-based software was developed to integrate
the shape definition GUI and computer vision components as well as to control the robot. A
number of test shapes were defined using the shape definition GUI and constructed closed
loop by the gantry robot supported by the computer vision system.

6.2 Summary of the observations and findings
The system developed, which had a PC-based software component and a robotic system as its
primary two constituents, was successful in fulfilling the overarching goal of constructing
arbitrary 3D shapes using small construction cubes. The system was capable of constructing
all test shapes that met the minimum specifications of containing 30 cubes with at least four
cubes in height. In addition, the system was capable of constructing shapes up to six cubes
in height that contained arbitrary cube rotations about the z-axis, partially supported cubes,
small inter-cube tolerances and leaning cube stacks.

The system was able to perform the construction closed loop by using the computer vision
system to assist in handling unexpected events. Specifically, the system was able to success-
fully detect, re-grip and re-orient the cube in the dropped cube case and issue a construction
failure signal in the structural damage case. A gantry robot approach with a design focus on
the rigidity of the mechanical component was found to be a successful approach to the cube
construction task. Furthermore, the pin-hole camera model based approach to 3D cube local-
isation component of the through mapping image coordinate system to the world coordinate
system was found to be a robust solution for the computer vision component of this task.

73

C.H. Conroy Part 3. Main Report

6.3 Contribution
The domain of mechanical design for robots and the construction needed to be explored to
complete this project. In particular, the domain of CAD software, and specifically the Fusion
360 CAD software package, needed to be mastered to assist in the creation of the mechanical
component of the Robotic System. Furthermore, an understanding of the functionality and
applicability of a number of mechanical components, including linear drive and linear motion
systems, needed to be acquired. In particular, this included the integration and control of
servo and stepper motors. The mechanical construction required the attainment of knowledge
to facilitate the direct use of a 3D printer as well as metal machining tools such as a lathe
and milling machine. All of the aforementioned components are common in a Mechanical
Engineering undergraduate course but are all non-existent in a Computer Engineering un-
dergraduate course. The study leader provided helpful guidance in terms of highlighting the
challenging aspects of the mechanical design which should be focused on as well as favorable
characteristics that should form part of the design.

A combination of new theory and the approaches arising from this theory needed to be
mastered in the computer vision domain. Specifically, traditional computer vision techniques
used for object detection needed to be understood and implemented as well as 3D localisation
approaches. In service of the latter aspect, knowledge of the pin-hole camera model needed to
be acquired and used in mapping between the image coordinate system and world coordinate
system. This approach followed from the study leader’s suggestion to use and explanation
of camera intrinsics and extrinsics. Furthermore, knowledge of the computer vision library
OpenCV was acquired to support the computer vision system development at various stages.
None of this computer vision knowledge is covered by undergraduate modules.

In a number of undergraduate modules, first principles 8-bit microcontroller development and
32-bit microcontroller development boards with hardware abstraction libraries were explored.
The first principles development of embedded software for a 32-bit microcontroller as well s
the complete first principles design of the controller circuit required the attainment of new
knowledge. Furthermore, the development of a PCB for the controller required the PCB
design software KiCAD to be mastered. Lastly, for the shape definition component, new
knowledge about the theory relating to the graphics pipeline and transformation matrices
used in 3D graphics rendering needed to be acquired. The use of the low-level graphics API
OpenGL needed to be understood for this purpose.

There were no novel software algorithms or hardware circuits developed in this project.
However, the design of the mechanical component of the Robotic System, the hardware of the
embedded controller circuit, the embedded software, the 3D rendering software, the computer
vision software and system controller was completely from first principles which resulted
in unique designs and implementations for each of these facets. During the course of the
development of these components, the study leader highlighted the challenging facets of each
which should receive the requisite attention.

Libraries were relied on heavily during the initial design and prototyping phase for the
computer vision system and embedded controller. The embedded controller implementation

74

C.H. Conroy Part 3. Main Report

was converted completely to a first principles implementation. The core aspects of the
computer vision system were developed from first principles while basic image processing
functions were retained from the OpenCV library. The calibration aspects of the computer
vision component were also considered as not a core aspect of the computer vision system and
OpenCV was used for this purpose. Lastly, the high-level idea for the approach to the custom
square corner detection algorithm was inspired by a student in the same research group in
their approach to detecting puzzle-piece corners. However, the design and implementation of
this algorithm was from first principles and only loosely related.

6.4 Future work
The success of the design of the robotic subsystem provides a solid foundation for further
development going forward. The first aspect should be investigated further is the improvement
of the cube localisation accuracy of the computer vision system to improve the tolerance used
for shapes constructed in a closed loop manner. Secondly, the use of a stereo vision computer
vision approach or an ToF camera over the monocular vision approach used in this project are
possible future avenues of exploration that would eliminate the need to assume the z-plane in
which a cube is detected. In addition, relatively simplistic path planning approaches were used
in this project. Therefore, a possible avenue of improvement would involve an investigation
into the use of more sophisticated path planning approaches.

For a given construction sequence, the cubes are made available to the robot by placing the
cubes in pre-defined locations. An alternative approach that should be explored involves
the arbitrary initial placement of the cubes within the robot’s workspace followed by the
implementation of an algorithm that would allow the robot to detect the cubes and construct
the shape from this initial state. Finally, on a related note, it was observed that one of the main
sources of inaccuracy in the system was the deviations introduced when the robot gripped
the source cube for construction. Therefore, further work into improving the accuracy of the
source cube attainment mechanism should be done.

75

C.H. Conroy Part 3. Main Report

7. References

[1] G. C. Burdea and H. J. Wolfson, “Solving jigsaw puzzles by a robot,” IEEE Transactions
on Robotics and Automation, vol. 5, pp. 752–764, Dec. 1989.

[2] G. S. Sharath, N. Hiremath, and G. Manjunatha, “Design and analysis of gantry robot
for pick and place mechanism with Arduino Mega 2560 microcontroller and processed
using pythons,” Materials Today: Proceedings, vol. 45, pp. 377–384, Jan. 2021.

[3] G. Lundstrom, “Industrial robot grippers,” Industrial Robot, vol. 1, pp. 72–82, Feb.
1973.

[4] R. Miller, Robots and Robotics Principles, Systems, and Industrial Applications. New
York: McGraw-Hill Education, 2017.

[5] The MathWorks, Inc., “Object recognition,” Accessed Oct. 30, 2021. [On-
line]. Available: https://www.mathworks.com/solutions/image-video-processing/object-
recognition.html

[6] A. Kumar, “An overview of visual servoing for robot manipulators,” Control Automation,
May 15 2020. [Online]. Available: https://control.com/technical-articles/an-overview-
of-visual-servoing-for-robot-manipulators/

[7] J. Xiao, B. C. Russell, and A. Torralba, “Localizing 3D cuboids in single-view images,”
Advances in Neural Information Processing Systems, vol. 1, 2012.

[8] J. Canny, “A computational approach to edge detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. PAMI-8, pp. 679–698, Nov. 1986.

[9] C. G. Harris and M. J. Stephens, “A combined corner and edge detector,” in Alvey Vision
Conference, vol. 15, 1988.

[10] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[11] P. Guruprasad, “Overview of different thresholding methods in image processing,” in
Proc. TEQIP Sponsored 3rd Nat. Conf. ETACC, Jun. 2020, pp. 1–4.

[12] X. Y. Gong, H. Su, D. Xu, Z. T. Zhang, F. Shen, and H. B. Yang, “An overview of
contour detection approaches,” International Journal of Automation and Computing,
vol. 15, pp. 656–672, Jun. 2018.

[13] S. Suzuki and K. be, “Topological structural analysis of digitized binary images by
border following,” Computer Vision, Graphics, and Image Processing, vol. 30, no. 1, pp.
32–46, 1985.

[14] S. Yokoi, J. ichiro Toriwaki, and T. Fukumura, “An analysis of topological properties of
digitized binary pictures using local features,” Computer Graphics and Image Processing,
vol. 4, no. 1, pp. 63–73, 1975.

76

C.H. Conroy Part 3. Main Report

[15] H. Wei and B. Y. Chen, “Robotic object recognition and grasping with a natural
background,” International Journal of Advanced Robotic Systems, vol. 17, pp. 1–17,
Mar. 2020.

[16] N. Aggarwal and W. C. Karl, “Line detection in images through regularized Hough
transform,” IEEE Transactions on Image Processing, vol. 15, pp. 582–591, Feb. 2006.

[17] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput.
Vision, vol. 60, no. 2, p. 91–110, Nov. 2004.

[18] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in Computer
Vision – ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 404–417.

[19] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” in
Computer Vision – ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 430–443.

[20] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary robust independent
elementary features,” in Computer Vision – ECCV 2010, K. Daniilidis, P. Maragos, and
N. Paragios, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 778–792.

[21] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative
to SIFT or SURF,” in 2011 International Conference on Computer Vision, 2011, pp.
2564–2571.

[22] C.-Y. Lin and C.-L. Hsueh, “Recognition technique for character cube stacking robot,”
in 2008 10th International Conference on Control, Automation, Robotics and Vision,
Dec. 2008, pp. 791–796.

[23] K. Liu, W. Shang, S. Du, and S. Cong, “6-DOF object localization by combining
monocular vision and robot arm kinematics,” in 2017 36th Chinese Control Conference
(CCC), 2017, pp. 6575–6580.

[24] P. Azad, T. Asfour, and R. Dillmann, “Stereo-based 6D object localization for grasping
with humanoid robot systems,” in 2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2007, pp. 919–924.

[25] R. Szeliski, Computer Vision : Algorithms and Applications. London: Springer, 2011.

[26] OpenCV team, “Camera calibration and 3D reconstruction,” Accessed Oct. 31,
2021. [Online]. Available: https://docs.opencv.org/2.4/modules/calib3d/doc/camera_
calibration_and_3d_reconstruction.html

[27] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–1334, 2000.

[28] The MathWorks, Inc., “What is camera calibration?” Accessed Nov. 01, 2021. [Online].
Available: https://www.mathworks.com/help/vision/ug/camera-calibration.html

77

C.H. Conroy Part 3. Main Report

[29] OpenCV team, “Real time pose estimation of a textured object,” Accessed Nov. 6, 2021.
[Online]. Available: https://docs.opencv.org/3.4.15/dc/d2c/tutorial_real_time_pose.html

[30] V. Lepetit, F. Moreno-Noguer, and P. Fua, “EPnP: An accurate O(n) solution to the PnP
problem,” International Journal of Computer Vision, vol. 81, pp. 155–166, 02 2009.

[31] Z. Zhang, Y. Hu, G. Yu, and J. Dai, “DeepTag: A general framework for fiducial marker
design and detection,” ArXiv, vol. abs/2105.13731, 2021.

[32] M. Kostak and A. Slaby, “Designing a simple fiducial marker for localization in spatial
scenes using neural networks,” Sensors, vol. 21, no. 16, p. 5407, 2021.

[33] D. Wagner and D. Schmalstieg, “ARToolKitPlus for pose tracking on mobile devices,”
in Proceedings of 12th Computer Vision Winter Workshop (CVWW’07), Feb. 2007.

[34] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in 2011 IEEE Interna-
tional Conference on Robotics and Automation, 2011, pp. 3400–3407.

[35] M. Hirzer, “Marker detection for augmented reality applications,” Inst. for Com-
puter Graphics and Vision, Graz University of Technology, Austria, Tech. Rep.
ICG–TR–08/05, Oct. 2008.

78

C.H. Conroy Part 4. Appendix: technical documentation

Part 4. Appendix: technical documentation

79

C.H. Conroy Part 4. Appendix: technical documentation

HARDWARE part of the project

Record 1. System block diagram

STM32L072RZT6

Microcontroller

CH340 USB to Serial
Converter IC

3.3 V Linear Voltage
Regulator

5 V Linear Voltage
Regualtor

Y-Axis Stepper Motor
Driver

Servo Motor

X-Axis Stepper Motor
Driver

Z-Axis Stepper Motor
Driver

R-Axis Stepper Motor
Driver

Y-Axis Stepper Motor

X-Axis Stepper Motor

Z-Axis Stepper Motor

R-Axis Stepper Motor ADP 5111 Pressure
Sensor

12 V / 20 A Power
Supply

Micro USB Female
Connector

12 MHz Oscillator16 MHz Oscillator

Reset Push Button

MOSFET Driver
Circuit

Workspace LED strip
lightingCooling fan

12V

12V 5V

Clock

signal

Clock

signal

PWM

Coil-current control

Coil-current control

Coil-current control

Coil-current control

12V

12V

12V

12V

12V

12V 12V

Digital

signal

USB

differential

signal

Analog

signal

Digital signal

To micro-

controller

Figure 20. System block diagram of the hardware component of the system.

80

C.H. Conroy Part 4. Appendix: technical documentation

Record 2. Systems level description of the design
The hardware component of the system that is captured by the system block diagram shown
in Figure 20 consists of three primary components. The first component is the hardware
that forms part of the embedded robotic controller itself. The second is the servo motor and
pressure sensor that form part of the vacuum generation mechanism while the third is the set
of stepper motors used to drive the robotic manipulator. The entire hardware component is
centred around the STM32L072RZT6 microcontroller. In order to power the system, a 12
V and 20 A power supply was used. Since components operate at different voltage levels
within the system, there is also a 3.3 V and a 5 V linear voltage regulator. The microcontroller
itself uses the 3.3 V linear voltage regulator and is clocked by a 16 MHz oscillator. The
microcontroller controls each of the robotic manipulator stepper motors through the use of
DRV8825 stepper motor drivers. These take a 3.3 V signal as input and pass the 12 V power
through to the stepper motors in a controlled fashion. The vacuum system servo motor is
powered by the 5 V linear regulator and controlled by the microcontroller with a 3.3 V PWM
signal. Similarly, the microcontroller also uses MOSFET circuits to control a cooling fan and
the system workspace lighting. Lastly, the microcontroller takes an analog signal from the
vacuum system pressure sensor as input to an ADC.

81

C.H. Conroy Part 4. Appendix: technical documentation

Record 3. Complete circuit diagrams and description
See the next three pages for complete schematic of the embedded robotic subsystem controller
circuit schematic that was created as part of the PCB design process.

82

C.H. Conroy Part 4. Appendix: technical documentation

Record 4. Hardware acceptance test procedure
The functionality of the hardware can be verified using the following procedure:

1. Connect the power supply to main’s electricity using the three point plug.
2. Verify that the green light power light on the PCB turns on to indicate that the hardware

is receiving power.
3. Connect the micro USB port on the embedded controller to the USB A port on a PC.
4. Send a pressure sensor request packet to the hardware as detailed in the serial commu-

nication design section.
5. Verify the receive and transmit lights both flash to indicate the hardware is responsive.

86

C.H. Conroy Part 4. Appendix: technical documentation

Record 5. User guide
The hardware can be set up for use by performing the following steps:

1. Ensure that all the stepper motor cables, servo motor cable, pressure sensor cable,
lighting cable and cooling fan cable are connected to the marked connectors on the
board.

2. Connect the power supply to main’s electricity using the three point plug.
3. Verify that the green light power light on the PCB turns on to indicate that the hardware

is receiving power.
4. Connect the micro USB port on the embedded controller to the USB A port on a PC.
5. Start the system control software.
6. Select the robot’s serial port and connect the embedded controller using the Connect

button.
7. If a connection is successfully established, the system is ready to use.

87

C.H. Conroy Part 4. Appendix: technical documentation

SOFTWARE part of the project

Record 6. Software process flow diagrams

Vision

LoggerHome View

RobotShader

Program Cube

Cube World

Model

Packet

Construction

View

OpenGL

View

Design View

System

Controller

Cube Task

Top-Level Class

User Interface Class

Cube-Related Class

Other Class
Key

Figure 21. Component diagram showing the structure of the integrated PC-based
software solution.

88

C.H. Conroy Part 4. Appendix: technical documentation

Record 7. Explanation of software modules
The System Controller class shown in Figure 21 sits at the top level of this implementation
and directly contains the user interface classes13 as well as the Logger class through which
all system event information, warnings and errors are recorded. The user interface classes
partition the software based on functionality requirements. Specifically, the Home View serves
as the entrance point to the software and its purpose is to ensure the Robotic System and camera
hardware are present and connected. The Design View integrates the components related to
the Shape Definition function. This includes the OpenGL View which uses OpenGL to create
a 3D render of a model of cubes. This class is supported by the Shader Program class which
manages the shaders used for the rendering task. The model itself is sourced from the Cube
World Model class. The purpose of this class is to simply capture the arrangement of cubes,
which are each represented by an instance of the Cube class, and relate this arrangement to the
world coordinate system. The Design View interface facilitates the creation and manipulation
of a Cube World Model instance which serves as output from the Shape Definition component.

The Cube World Model instance created in the Design View acts as input to the construction
process around which the Construction View class is based. In order for construction to take
place, the system needs to interact with the robot. The Robot class was created for this purpose.
The class provides an abstract interface for the Construction View instance to send position
and actuation control commands to the Robotic System. The units of communication which
the Robot class uses to interact with embedded robotic controller are abstracted in the form
of the Packet class. This class is based on the packet designed in Section 3.3.4. Similarly,
the Vision class exists to offer an abstract interface to the Vision System developed in Section
3.5. The Construction View instance receives information from this component that is used to
guide the control of the Robot instance during the construction process accordingly.

13Each of the user interface classes correspond to a distinct screen in the user interface.

89

C.H. Conroy Part 4. Appendix: technical documentation

Record 8. Complete source code
Complete code has been submitted separately on the AMS.

90

C.H. Conroy Part 4. Appendix: technical documentation

Record 9. Software acceptance test procedure
In order to make use of the PC-based software’s full functionality, a connection to the Robotic
System is required. Therefore, the user guide for the hardware setup should first be followed.
After completing this process, the software should have an established connection with the
Robotic System. Following this, navigate to the Construction view in the software. On this
screen, click the Calibrate button. The robot calibration sequence should begin and carry out
to completion. This verifies that the software is functioning correctly.

91

C.H. Conroy Part 4. Appendix: technical documentation

Record 10. Software user guide
This section assumes that the software has been verified to be functioning correctly with the
software acceptance test procedure. The system control software is started by running the
PC-based software executable file. The initial screen displayed is the home screen as shown
in Figure 22. A feed from the camera of the robot’s workspace should be displayed to indicate
the camera’s presence. The system message log for informational messages, warnings and
errors is displayed at the bottom of the screen. The messages can be filtered as needed with
the filter checkboxes. Connect to the robot by selecting the CH340 serial port from the serial
port list and clicking the Connect button.

The Shape Definition component can be accessed by clicking on the Shape Design button.
This screen is shown in Figure 23. The set of buttons in the top left can be used to insert and
remove cubes from the build as well as to load and save model designs. Individual cubes can
be selected in the left cubes list. Use the arrow keys to translate the cube horizontally. Use the
shift button with the arrow keys to move the cube vertically and to rotate the cube. Use the
mouse buttons to move the camera around the structure.

The Construction view can be accessed by clicking on the Construction button. This view
is shown in Figure 24. The first group of buttons can be used to calibrate the robot, apply
the computer vision system to the current scene, load a model for construction and start
a construction sequence. The vision view and model views shown in Figures 25 and 28
respectively. The next set of buttons are used to set the active state of the stepper motors and
control the vacuum actuator state. Finally the last set of controls allows the control of the
position of the robot.

The vision view shown in Figure 25 is used to set the annotations and stage displayed for the
image display. Examples of these stages are shown in Figures 26 and 27. Finally, the model
view in Figure 28 can be used to select the 3D render displayed. Either the shape to be built is
displayed, or the live location of the cubes during construction is displayed.

92

C.H. Conroy Part 4. Appendix: technical documentation

Figure 22. System control software home screen.

Figure 23. System control software 3D shape design screen.

93

C.H. Conroy Part 4. Appendix: technical documentation

Figure 24. System control software construction screen.

Figure 25. System control software vision view screen.

94

C.H. Conroy Part 4. Appendix: technical documentation

Figure 26. System control software vision view screen with contour step displayed.

Figure 27. System control software vision view screen with fiducial step displayed.

95

C.H. Conroy Part 4. Appendix: technical documentation

Figure 28. System control software model screen.

96

C.H. Conroy Part 4. Appendix: technical documentation

EXPERIMENTAL DATA

Record 11. Experimental data
Qualification Test 1 Results

A test set of 10 3D shape models was defined using the Shape Definition component for use
in qualification test 1. Table 12 summarises the important properties of each of these shapes

Shape
ID

Number of
Cubes

Rotated
Cubes

Partially
Supported
Cubes14

Slanted
Cube
Stack

Shape
Height

1 30 No No No 4

2 30 Yes No No 4

3 30 No Yes Yes 6

4 30 Yes No No 6

5 30 Yes Yes No 5

6 30 No No No 6

7 30 Yes Yes Yes 6

8 30 Yes Yes No 6

9 30 No No Yes 6

10 30 No Yes No 4

Table 12. Properties of each 3D shape model in the test set for qualification test 1.

14A cube is considered to be partially supported if less than half of the bottom face of the cube is touching the
top faces of the cubes in the layer below it.

97

C.H. Conroy Part 4. Appendix: technical documentation

Shape ID Back Left Back Right Centre Front Left Front
Right

1 Success Success Success Success Success

2 Success Success Success Success Success

3 Success Success Success Success Success

4 Success Success Success Success Success

5 Success Success Success Success Success

6 Success Success Success Success Success

7 Success Success Success Success Success

8 Success Success Success Success Success

9 Success Success Success Success Success

10 Success Success Success Success Success

Table 13. Results of each shape construction sequence at 5 different locations in the
robot’s workspace.

Qualification Test 3 Results

Iteration Cube Gripped
(Y/N)? Time Dropped (s) Move Sequence

Completed (Y/N)?
Cube Released
(Y/N)?

1 Yes Not Dropped Yes Yes

2 Yes Not Dropped Yes Yes

3 Yes Not Dropped Yes Yes

4 Yes Not Dropped Yes Yes

5 Yes Not Dropped Yes Yes

6 Yes Not Dropped Yes Yes

7 Yes Not Dropped Yes Yes

8 Yes Not Dropped Yes Yes

9 Yes Not Dropped Yes Yes

10 Yes Not Dropped Yes Yes

Table 14. Results of the movement sequence iterations for qualification test 3.

98

C.H. Conroy Part 4. Appendix: technical documentation

Qualification Test 4 Results

Sample
Set

X Position
(steps)

Y Position
(steps)

Z Position
(steps)

Reference
Length
(pixels)

X Points
Range
(pixels)

Y Points
Range
(pixels)

1 0 0 0 79,168 9,751 8,03

2 0 1125 0 61,265 13,883 11,059

3 507 562 0 70,112 15,882 12,176

4 1015 0 0 75,279 15,853 12,257

5 1015 1125 0 72,198 11,063 8,388

Table 15. Pixel measurements using the point cluster images for the x- and y-axis
repeatability test.

Sample Set X Points Range (mm) Y Points Range (mm)
1 0,2463 0,2028

2 0,4532 0,3610

3 0,4530 0,3473

4 0,4211 0,3256

5 0,3064 0,2323

Table 16. X- and y-axis repeatability test measurements after conversion from pixel
units in Table 15.

Sample
Set

X Position
(steps)

Y Position
(steps)

Z Position
(steps)

Reference
Length
(pixels)

Z Points
Range
(pixels)

Z Points
Range
(mm)

1 852 70 500 60,001 23 0,7666

2 852 70 2300 61,26 19,96 0,6516

3 502 400 500 60,962 18,506 0,6071

4 502 400 2300 60,705 15,173 0,4998

5 194 700 500 60,397 17,557 0,5813

6 194 700 2300 60,27 19 0,6304

Table 17. Pixel measurements using the point cluster images for the z-axis repeatability
test.

99

C.H. Conroy Part 4. Appendix: technical documentation

Qualification Test 5 Results

Sample y0 Deviation
δ0 (mm)

y1 Deviation
δ1 (mm)

Deviation Angle
φ (○)

1 0,64 -0,66 0,3146

2 -0,36 0,53 -0,2154

3 -0,11 0,2 -0,0750

4 0,32 -0,22 0,1307

5 0,12 -0,08 0,0484

6 1,51 -1,85 0,8132

7 -0,16 0,32 -0,1161

8 0,7 -0,47 0,2831

9 -1,24 1,01 -0,5445

10 -1,43 1,22 -0,6414

11 1,12 -0,31 0,3461

12 0,66 -0,84 0,3630

13 0,98 -1,18 0,5228

14 -0,36 0,53 -0,2154

15 0,23 -0,44 0,1621

16 0,6 -0,95 0,3751

17 -0,47 0,66 -0,2735

18 0,57 -0,4 0,2347

Table 18. Deviation measurements of drawn cube orientation lines and the calculated
angle of deviation of the line cube.

100

C.H. Conroy Part 4. Appendix: technical documentation

Qualification Test 6 Results

Set
Sample

True X
Position
(steps)

True Y
Position
(steps)

True
Angle (○)

Detected
X Position
(steps)

Detected
Y Position
(steps)

Detected
Angle (○)

1 2 20 0 3 23 -0,26

2 347 20 0 347 26 -1,23

3 681 21 0 678 25 0,46

4 986 22 0 982 26 0,5

5 4 369 0 6 371 2,39

6 344 369 0 346 372 0,45

7 680 369 0 676 373 1,2

8 984 370 0 980 372 0

9 18 720 0 20 719 1,4

10 347 719 0 348 718 0,49

11 663 720 0 658 719 2,35

12 988 719 0 983 720 0,51

13 14 1079 0 14 1077 0,72

14 356 1080 0 355 1077 1,2

15 679 1080 0 677 1078 0,49

16 989 1081 0 987 1080 1,22

Table 19. True poses of the first test set of cubes for qualification test 6 along with the
corresponding estimated poses detected by the Vision System.

101

C.H. Conroy Part 4. Appendix: technical documentation

Set
Sample

True X
Position
(steps)

True Y
Position
(steps)

True
Angle (○)

Detected
X Position
(steps)

Detected
Y Position
(steps)

Detected
Angle (○)

1 83 77 45 85 80 -44,98

2 396 61 45 395 65 44,31

3 677 77 45 673 82 44,66

4 974 54 45 971 59 41,5

5 214 245 45 214 246 -44,68

6 505 252 45 504 524 44,65

7 777 286 45 772 289 -44,62

8 19 438 45 22 439 -44,66

9 307 450 45 308 450 -43,96

10 530 533 45 527 532 44,07

11 916 447 45 909 449 -43

12 26 733 45 27 732 -44,65

13 271 790 45 271 788 43,31

14 654 711 45 650 709 45

15 928 733 45 923 731 -43,66

16 25 1038 45 25 1035 44,66

17 358 1012 45 358 1009 -44,67

18 625 1041 45 621 1037 -44,66

19 937 1028 45 933 1025 -42,27

Table 20. True poses of the second test set of cubes for qualification test 6 along with the
corresponding estimated poses detected by the Vision System.

102

C.H. Conroy Part 4. Appendix: technical documentation

Figure 29. First test set of known cube positions and orientations (0○) in the robot’s
workspace for qualification test 6.

Figure 30. First test set of cubes after pose estimation by the Vision System for
qualification test 6.

103

C.H. Conroy Part 4. Appendix: technical documentation

Figure 31. Second test set of known cube positions and orientations (45○) in the robot’s
workspace for qualification test 6.

Figure 32. Second test set of cubes after pose estimation by the Vision System for
qualification test 6.

104

C.H. Conroy Part 4. Appendix: technical documentation

Qualification Test 7 Results

Iteration
Dropped Cubes Detected? Failure Detected

(Y/N)?1-5 6-10 11-15 16-20 21-25
1 Yes Yes Yes Yes Yes Yes

2 Yes Yes Yes Yes Yes Yes

3 Yes Yes Yes Yes Yes Yes

4 Yes Yes Yes Yes Yes Yes

5 Yes Yes Yes Yes Yes Yes

Table 21. Results of qualification test 7 to assess capability of system to detect dropped
cubes and construction failures.

105

